

Corrosion-Resistant Non-Carbon Electrocatalyst Supports for PEFCs

PI: Vijay K. Ramani Washington University in St. Louis

Project # FC145

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and budget

Competitively selected project

- Project start date: 03/01/16*
- Project end date: 08/31/19⁺
- Total project budget: \$ 3,397,431
 - Total recipient share: \$ 397,431
 - Total federal share: \$ 3,000,000
 - Total DOE funds spent**: \$ 425000

Partners

- Project lead: Washington University in St. Louis
- Partners (sub-contractors):
 - Nissan Technical Center, North America
 - University of New Mexico

* Official date of contract from DOE. Issue of sub-contracts were finalized on April 15th 2016. Kick-off meeting held on April 21st 2016
* Reflects a 6-month no-cost extension granted due to PI move to WashU
** As of 2/28/17.

Overview

Barriers and DOE target

- Barriers to be addressed:
 - Durability
 - Performance
 - Cost

	Units	2020 Target
Loss in catalytic (mass) activity ^{a,b}	% loss	<40
Loss in performance at 0.8 A/cm ^{2 a}	mV	30
Loss in performance at 1.5 A/cm ^{2 b}	mV	30
Mass activity @ 900 mV _{iR-free} ^c	A/mg _{PGM}	0.44

a-Table E1, b-Table E2; Appendix E of FOA; C DOE protocol per appendix E of FOA

Impact of carbon corrosion on PEFCs

Carbon is mainly used as an electrocatalyst support due to its:

- High electrical conductivity (> 20 S/cm)
- High BET surface area : 200 300 m²/g
- Low cost

Electrochemical oxidation of carbon occurs during fuel cell operation

• C+2H₂O→CO₂+4H⁺+4e⁻ E^o = 0.207 V vs. SHE

Carbon corrosion is accelerated:

- During start/stop operation (cathode carbon corrosion)
- Under fuel starvation conditions (anode carbon corrosion)

Kinetic and ohmic losses result due to:

• Pt sintering and loss of contact between Pt and C

Mass transport losses occur due to

• Formation of hydrophilic groups => flooding

Research objectives

- Conducting, doped, non-PGM metal oxides (electron conductivity >0.2 S/cm)
- High surface area(>70 m²/g)
- Exhibits SMSI with Pt
- Corrosion resistant (DOE 2020 targets)
- High electrocatalyst performance (DOE 2020 targets)

Metal oxide	Stable potential window (vs. SHE) (pH 0-1)	Manifestation of SMSI	Possible dopants
TiO ₂ (4+, 60.5 pm)	-0.4 - 2.2 V	Yes	Nb (5+, 64 pm), Ta (5+, 64 pm), Mo (6+, 59 pm), W (6+, 60 pm)
Nb ₂ O ₅ (5+, 64 pm)	-0.2 - 2.2 V	Yes	Mo (6+, 59 pm), W (6+, 60 pm), Tc (7+, 56 pm), Re (7+, 53 pm)
Ta ₂ O ₅ (5+, 64 pm)	-0.7 - 2.2 V	Yes	Mo (6+, 59 pm), W (6+, 60 pm), Tc (7+, 56 pm), Re (7+, 53 pm)
SnO2 (4+, 69 pm)	0 - 2.2 V	No	Sb (5+, 60pm)

Research objectives: Technical targets

Metric	Units	SoA (Pt/C) *	SoA (Pt/RTO)	Proposed approach status (Pt/TiO ₂ -Ta)**	End target	DOE 2020 target
Total PGM content	g kW ⁻¹	0.55	0.55	Not Available	0.25	<0.125
Total PGM loading	mg cm ⁻²	0.4	0.4	0.6	0.25	<0.125
Voltage at 1.5 A cm ⁻² (air)	V	0.45	0.48	0.3	0.55	N/A
Loss in mass activity ^{a,b}	% loss	32	33	<10%	<5%	<40
Voltage loss at 0.8 A cm ⁻² a	mV	81	9	< 15	<10	30
Voltage loss at 1.5 A cm ^{-2 b}	mV	182+	20	N/A; 20 mV at 1Acm ⁻²	<20	30
Mass activity@900 mV _{iR-free}	A mg⁻ ¹ _{PGM}	0.07	0.07	ca. 0.05	0.3	0.44

^a-Table E1, ^b-Table E2; Appendix E of FOA; ^c DOE protocol per appendix E of FOA; **Pt/C refers* to *Pt/Graphitized Ketjen Black tested at NTCNA*; ***Results from entirely un-optimized MEAs* run primarily to test stability. ⁺*Pt/HSAC durability is much worse – MEA does not run beyond* 0.5 A cm⁻² after start-stop cycling.

Data from MEA

in a PEFC

Research objectives: 1st year milestones

Approach

Density Functional Theory - Doping of TiO₂ with Ta

Change in the electronic structure of supports as a result of doping

DFT optimized structure of TiO_2 (PBEsol functional). Cell parameters a=4.56, b=4.56, c=2.93 Å red – oxygen, blue - Ti

Conduction band 3 Energy [eV] Band gap at Γ point Fermi level -2 Valence band -3 $^{-5}\Gamma$ X M ZX Z RM Г R

DFT calculated band structure of TiO_2 . Top HSE06 level, bottom PBEsol level

- TiO₂ is a semiconductor, absorbs in UV.
- Direct B-G of 1.82 eV at PBEsol level, 3.44 eV at HSE06 level (hybrid functional needed).
- Experimental reports 3.3-3.6 eV (UPS-IPS spectroscopy).

Approach

Density Functional Theory - Doping of TiO₂ with Ta

Change in the electronic structure of supports as a result of doping

 TiO₂ is a semiconductor, while doping of Ta creates a *n*-type semiconductor with increased conductivity - leads to "metallization"

Design Porous TiO₂ supports

Approach

in ethanol

- Precursors: Metal alkoxides
- High water/ethanol to alkoxide ratio

IISSAN

D AMEDICAS

exhaust gas

Pressure

Approach

Potential cycling to evaluate support and electrocatalyst

electrochemical stability/durability

Catalyst durability: *Ex-situ* and insitu Pt dissolution (load cycling)

NISSAN

Protocol for simulating start-up/shut-down phenomena

Protocol for simulating load cycling phenomena.

The protocols recommended in solicitation **DE-FOA-0001224 (next slide)** will also be employed.

Approach

Potential cycling to evaluate support and electrocatalyst electrochemical stability/durability

Catalyst durability: *Ex-situ* and *in situ* carbon corrosion (start/stop)

NISSAN

Catalyst durability: *Ex-situ* and *in-situ* Pt dissolution (load cycling)

Approach Potential cycling to evaluate support and electrocatalyst durability

- Three electrode cell with rotating disk electrode
 - Working electrode (WE) : Glassy carbon coated with catalyst support
 - Counter electrode : Pt foil
 - Reference electrode : Saturated calomel electrode (SCE)
 - Electrolyte : N₂ saturated 0.1M HClO₄
- Support loading on W.E.: 200-600 µg/cm²_{aeo} (material dependent)
- Pt loading: 17.2µg_{Pt}/cm²_{aeo}
- Potential cycling protocol

DFT calculations for Ta-TiO₂ support

DFT Calculations: Doping TiO2 with Ta, Nb, Mo and W

IISSAN

Doping of TiO₂ with Ta, Nb, W, and Mo <u>– Defect Thermodynamics</u>

- Defect stability depends on the chemical potential of a dopant
- Doping with Ta results in the most stable doped structure;
- Thermodynamic stability of doped structures expected to change: Ta > W > Nb > Mo

Pt on TiO₂ doped with Ta, Nb, W, and Mo

Pt(111) and $TiO_2(100)$ surface have similar cell parameters

a = 8.32 Å
Pt(111) b= 9.61 Å
$$\alpha = \beta = \gamma = 90^{\circ}$$

DFT optimized structure of Pt(111) surface on TiO2(100) doped with 4% Ta. (tan – platinum, red – oxygen, blue – titanium, pink - tantalum) One unit cell is shown.

Interaction between the layers $\Delta E_{interaction} = E(Pt \text{ on } TaTiO_2) - E(Pt) - E(TaTiO_2)$

Strong interaction between the catalyst and the support layer (-0.08 eV per atom) > high stability of Pt on doped TiO_2 to be expected

• Pt(111) and $TiO_2(100)$ have similar cell parameters – no strain on the Pt-TiO₂ interface

Pt on TiO₂ doped with Ta, Nb, W, and Mo

d-band center relative to the Fermi level ε_{d} - E_{F} = -2.02 eV for Pt(111) ε_{d} - E_{F} = -2.34 eV for Pt(111) on TaTiO₂ ε_{d} - E_{F} = -2.32 eV for Pt(111) on NbTiO₂ ε_{d} - E_{F} = -2.28 eV for Pt(111) on MoTiO₂ ε_{d} - E_{F} = -2.30 eV for Pt(111) on WTiO₂ the lowest *d*-band center (**larger** ε_{d} - E_{F}) for TiO₂ doped with Ta, followed by Nb, W, and Mo

Projected Density of States (PDOS) of Pt(111) and Pt(111) on TiO_2 doped with 4% Ta, Nb, Mo, and W

Energy of interaction between Pt and TiO_2 layer doped with 4% Ta, Nb, Mo, and W calculated as - 0.13 eV, -0.08 eV, -0.10 eV, and -0.11 eV per atom

- Doping with 4% Ta, Nb, Mo, and W alters electronic structure of platinum in a similar way.
- *d*-band center lowest for doping with Ta > Nb > W> Mo
- Based on the DFT calculated interaction energy between Pt and doped TiO₂, Pt(111) the most stable on TiO₂ doped with Ta, followed by W, Mo, and Nb.

Selected Metal Oxides Synthesized

B.E.T surface area and electronic conductivity for the different doped metal oxides evaluated.

Technical accomplishments Optimization of Doped Metal Oxide Properties (different method)

Conductivity, 1.5 S/cm & BET surface area 130 m²/g (Q3 milestone reached)

NISSAN

Efficacy of Sacrificial Support Method

Step:	S _{BET} , m ² /g	Conductivity, S/cm	Temperature, °C
1 _(post KOH)	220	1.00E-03	950
2	60	0.9	950

Physical properties of materials obtained after **Step-1**) high surface area TiO_2 following KOH etch, and **Step-2**) TiO_2 doped with ~5 wt% Ta after second heat treatment.

- Upon doping with Ta and second heat treatment, we sacrifice surface area for a 2-3 orders of magnitude increase in conductivity
- SSM is successful in yielding conducting and high surface area doped supports
- Final surface area and conductivity of Ta-TiO₂ support meet Q3 milestones.

Optimization of Doped Metal Oxide Properties (annealing temperature)

Conductivity, 1.6 S/cm & BET surface area 50 m²/g (Q3 milestone reached)

STEM: Sb-SnO₂, ALD-Pt/Sb-SnO₂ and Commercial Pt/C

25

Electrochemical stability of Sb-SnO₂ support: start-stop protocol

RDE: ECSA and electrochemical stability of Pt/Sb-SnO₂ catalyst

Remaining Challenges and Barriers SEM pictures of Pt/C and Pt/MO* catalyst layers

	Pt/HSAC	Pt/MO
CL thickness (µm)	11	5.5
I/C mass ratio	0.9	0.9
B.E.T. surface area(m ² /g)	313	39
ε _i (ionomer volume fraction)	0.21	0.66

$$\varepsilon_{\rm i} \equiv \frac{V_{\rm I,wet}}{V_{\rm cath}} = \left(\frac{I}{C}\right) \frac{10}{f_{\rm t} d_{\rm I,dry}} \left(1 + \frac{M_{\rm w} d_{\rm I,dry} \lambda}{d_{\rm w} {\rm EW}}\right)$$

- MO is denser than carbon
 - The Pt/MO CL is much thinner than Pt/HSAC.
- **D** The ionomer volume fraction (ϵ_i) is higher in Pt/MO
- Optimize MEA composition and design

RAD AMERICAS

Remaining Challenges and Barriers

Task Number	Milestone	Milestone Description	Milestone Verification Process*	Anticipated Date/Quarter
7	Milestone 7.1	2g of Pt/DS catalyst (SMSI)	Demonstrate SMSI; Meets Table 2 durability targets in RDE	M21/Q7
8	Milestone 8.1	Pt/DS catalyst	Demonstrate 10% increase in mass activity	M24/Q8
5	Milestone 5.2.1	2g of at least one doped oxide using SSM	B.E.T. area >70 m ² g ⁻¹ ; particle size <70nm; conductivity ; > 0.2 Scm ⁻¹ ; Stability and durability in RDE per DOE metrics	M27/Q9
6	Milestone 6.2.1 Go/No-Go	Deliver 2g of Pt/DS catalyst to NTCNA	20-40wt%Pt; > 70 m ² g ⁻¹ ; Pt particle size 3-6nm; meets DOE 2020 durability targets	M30/Q10

Remaining Challenges and Barriers

Task Number	Milestone	Milestone Description	Milestone Verification Process*	Anticipated Date/Quarter
10	Milestone 10.1	Pt/DS catalyst	Demonstrate "End Project" durability metrics and at least 80% of mass activity metric	M33/Q11
6	Milestone 6.2.2	Pt/DS catalyst	In addition to Milestone 6.2.1, meet "End Project" BoL mass activity target	M36/Q12
11	Milestone 11.1	Deliver cost model	Specify cost of best 2 Pt/DS materials	M39/Q13
12	Milestone 12.1 Go/No-Go	Deliver six 50 cm ² active area MEAs to DOE	Meet "End Project" durability, activity, and performance targets in Table 2	M42/Q14

Collaboration

Collaboration

Physical analysis

XRF

Facility and Equipment Capabilities

- Scanning Electron Microscope (SEM, STEM, EDS)
- X-ray Fluorescence Spectrometer (XRF): To determine the Pt loading.
- X-ray Photoelectron Spectroscopy (XPS): To determine SMSI.
- □ 5 fuel cell test test-stations (Hydrogenics)
- Expertise in the fabrication and characterization of catalyst layer (CL): ionomer volume fraction, proton transport resistance, and oxygen transport resistance.

BET

Rotating Disk Electrode: *ex-situ* catalyst performance and durability

Proposed Future Work

FY 2017

- WUSTL: Materials synthesis and characterization
 - ✓ Synthesis and characterization of Sb doped SnO₂ and other doped metal oxides (Ta,W,Nb doped TiO₂)
 - $\checkmark\,$ Electrochemical evaluation of support and Pt/MO stability
 - ✓ Investigation of SMSI in Pt/doped-metal-oxide systems
 - ✓ Measurement of BoL ECSA and ORR activity of selected catalysts
- Nissan North America Inc.: durability/performance testing
 - ✓ Accelerated test protocols on materials provided by WUSTL
 - ✓ Fabrication / testing of sub-scale and 50 $cm^2 MEAs$
- University of New Mexico
 - ✓ DFT calculations: conductivity and SMSI of relevant doped metal oxides
 - ✓ Characterization of the doped metal oxides and derived catalysts
 - ✓ High surface area support synthesis by SSM.

Summary

• Objectives and approach:

- Synthesize doped metal oxides for catalyst supports
- High conductivity and BET surface area
- Exhibits SMSI and corrosion resistant (attaining DOE 2020 targets)
- Relevance
 - Material-level mitigation strategies can solve cathode/anode durability issues
- Accomplishments
 - DFT framework in place to study effect of doping on conductivity
 - Successfully synthesized Niobium doped Titanium oxides with conductivities of 1.5 S/cm and B.E.T. surface areas of 130 m²/g, and Antimony doped Tin oxide with conductivities of 1.6 S/cm and B.E.T. surface areas of 50 m²/g.(Achieved the Q3 milestone)
- Collaborations
 - Washington University in St. Louis
 - Nissan Technical Center, North America
 - University of New Mexico

Electron conductivity measurement

- The sample powders were pressed (25 lb x in) into pellets of 5 mm in diameter and 0.3-0.5 mm in thickness using a custom built conductivity cell.
- Sample conductivity was calculated from the slope of LSV curve
- Vulcan Carbon Conductivity (XC72R, 250m²/g): 51 S/cm

Benchmark Data

- Most of the carbon supports degrades severely under start-stop cycling
- Only metal oxide support (RTO) showed excellent durability
- **Challenge: Improve the performance with low Pt loading and metal oxide support**

Benchmark Data

Both HSAC and Vulcan carbon show severe degradation after 1000 cycles of carbon corrosion protocol.
 Durability of catalysts made from other carbon supports (eg. graphitized carbon and F type) under carbon corrosion protocol at low Pt loadings (~0.1 mg/cm²) are currently under investigation.

Benchmark Data

□ Catalyst layer optimization (CL thickness, ionomer loadings) for low Pt loading electrodes with metal oxide supports would be key to lower the O₂ gas transport resistance and improve the performance.

Gas Transport Resistance in a CL

- 1. Estimate reactant gas transport resistance from the limiting current measurement.
- 2. Analyze the relation b/w the resistance and the total gas pressure to separate "other transport resistance".

Gas transport resistances

- □ H₂ gas transport resistances of anode catalyst layers made from Pt/RTO and Pt/graphitized Ketjen Black (TEC10EA30E) were measured. Pt loading was maintained at 0.05 mg_{Pt}/cm².
- O₂ gas transport resistances of cathode catalyst layers made from Pt/Ketjen Black (TEC10E50E) were measured. Pt loading was maintained at 0.35 mg_{Pt}/cm² as cathode

- Using limiting current experiments, gas transport resistances for both anode and cathode catalyst layers was determined.
- This diagnostic will help with the optimization of catalyst layer by varying catalyst layer porosities, ionomer content.

Gas Transport Losses in CL for Low PGM

 T. Mashio et al., ECS Trans. 11, 529, (2007).

 K. Sakai et al., ECS Trans. 25, 1193 (2009).

 41

 Y. Fukuyama et al., Electrochim. Acta, 117, 367 (2014).

Remaining Challenges and Barriers TEM images of Pt/C and Pt/MO*

- □ There are significant differences between Pt/C and Pt/MO
- □ Pt particle size, Pt dispersion/agglomeration, Pt particle density.
- Engineer wettability
- * MO= metal oxides

