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Overview

Timeline and budget

Competitively selected project Partners

- Project start date: 03/01/16* ' E;‘f{/%‘;ilfya% g\t/aﬁgmgton

* Project end date: 08/31/19* « Partners (sub-contractors):

- Total project budget: $ 3,397,431 - Hgﬁﬁgkgﬁgga' Center,
« Total recipient share: $ 397,431 _ Universitv of New Mexico
. Total federal share: $ 3,000,000 y

« Total DOE funds spent**: $ 425000

* Official date of contract from DOE. Issue of sub-contracts were finalized
on April 15 2016. Kick-off meeting held on April 215t 2016

* Reflects a 6-month no-cost extension granted due to Pl move to WashU
** As of 2/28/17.
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Qverview

Barriers and DOE target

e Barriers to be addressed:
— Durability
— Performance
— Cost

Units 2020 Target

A/cm?2a

a_Table E1, P-Table E2; Appendix E of FOA; € DOE protocol per appendix E of FOA




Relevance

Impact of carbon corrosion on PEFCs

Carbon is mainly used as an electrocatalyst support due to its:

 High electrical conductivity (> 20 S/cm)
« High BET surface area : 200 - 300 m?/g
» Low cost

Electrochemical oxidation of carbon occurs during fuel cell operation

« C+2H,0—CO,+4H*+4e- E° = 0.207 V vs. SHE

Carbon corrosion is accelerated:

* During start/stop operation (cathode carbon corrosion)
» Under fuel starvation conditions (anode carbon corrosion)

Kinetic and ohmic losses result due to:

* Pt sintering and loss of contact between Pt and C

Mass transport losses occur due to

» Formation of hydrophilic groups => flooding




Relevance

Research objectives

« Conducting, doped, non-PGM metal oxides (electron conductivity >0.2 S/cm)
« High surface area( >70 m?/g )

» Exhibits SMSI with Pt

» Corrosion resistant (DOE 2020 targets)

» High electrocatalyst performance (DOE 2020 targets)

Stable potential Manifestation
Metal oxide window (vs. SHE) Possible dopants
of SMSI
pH 0-1
. A Nb (5+, 64 pm), Ta (5+, 64 pm),
TiO, (4+, 60.5 pm) 04-22V Yes Mo (6+, 59 pm). W (6+ 60 pm)

o Mo (6+, 59 pm), W (6+, 60 pm),
Nb,Oy (5+, 64 pm) 02-22V Yes Te (7+, 56 pm), Re (7+. 53 pm)

Mo (6+, 59 pm), W (6+, 60 pm),
Tc (7+, 56 pm), Re (7+, 53 pm)

Ta,0; (5+, 64 pm) -0.7-22V Yes

Sn02 (4+, 69 pm) 0-2.2V No Sb (5+, 60pm)
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Relevance

Research objectives: Technical targets

(::/AC) SoA Proposed approach | End
« |(Pt/RTO)|status (Pt/TiO,-Ta)**| target —

Total PGM content gkw?1 0.55 0.55 Not Available 0.25 <0.125
Total PGM loading mgcm? 0.4 0.4 0.6 0.25 <0.125
Voltage at 1.5 A cm™ (air) V 0.45 0.48 0.3 0.55 N/A
Loss in mass activity P % loss 32 33 <10% <5% <40
Voltage loss at 0.8 A cm2 2 [\ 81 9 <15 <10 30

Voltage loss at 1.5 A cm2 © [ \VARN k¥ 20 N/A; 20 mV at 1Acm2 <20 30

Mass activity@900 mV

(9

AME 007 0.07 ca. 0.05 03 0.4
PGM

iR-free

a_Table E1, b-Table E2; Appendix E of FOA; € DOE protocol per appendix E of FOA; *Pt/C refers
to Pt/Graphitized Ketjen Black tested at NTCNA; **Results from entirely un-optimized MEAs Data from MEA
run primarily to test stability. *Pt/HSAC durability is much worse — MEA does not run beyond in a PEFC
0.5 A cm? after start-stop cycling.
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Relevance

Research objectives: 15t year milestones

e 2g Ta-doped TiO, support using SSM(or similar)
e B.ET. area >50 m? g*1; Particle size <70nm, conductivity >0.2 S cm™!

a ,
UNM



Approach

~
Density Functional Theory - Doping of TiO, with Ta UNM

Change in the electronic structure of supports as a result of doping

TET path: [-X-M-I-Z-R-A-Z|X-R[M-A
- z .R
1 A

Energy [eV]
b b B L B e W &

DFT optimized structure of TiO, (PBEsol

functional). Cell parameters a=4.56,

b=4.56, c=2.93 A

red —oxygen, blue - Ti DFT calculated band structure of TiO,. Top HSEOQ6 level,
bottom PBEsol level

'_JL'n

* TiO, is a semiconductor, absorbs in UV.
* Direct B-G of 1.82 eV at PBEsol level, 3.44 eV at HSEO6 level (hybrid functional needed).
* Experimental reports 3.3-3.6 eV (UPS-IPS spectroscopy).




Approach o\

Density Functional Theory - Doping of TiO, with Ta UNM

Change in the electronic structure of supports as a result of doping

Blue - Ti
Pink - Ta
Red - 0O

5 3
i [
: 2%
’ 1%‘k""c‘ﬁ—“‘“zdﬁfz£
2 G —
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L 5-1| Donor states.of Ta a
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B Y H-CE-MI

TiO, with 12.5% Ta (model concentration)

* TiO, is a semiconductor, while doping of Ta creates a n-type semiconductor with
increased conductivity - leads to “metallization”




Approach o\

UNM

Design Porous TiO, supports

. Synthesis and characterization of high surface area TiO, supports.
Silica (i) Synthesis of TiO, support.
template » sol—gel technique
» alkoxides titanium as precursors

ii Sacrificial support method (Templating)

« Cab-0O-Sil L90 surface area ~90 m? g-!, 0.22 ym

« Cab-O-Sil EH5, surface area ~400 m? g-', 0.14 ym

« pyrolyzed at 850°C followed by leaching with 40 wt.% HF

iii Characterization of TiO, support

* Morphology: SEM, N,-sorption BET surface area, pore size analysis
« Composition: EDS, XPS, Elemental Mapping
« Structure : XRD

« electron conductivity (in-house test cell)
Infiltration of TiO, support via

ultra sonication, followed by
pyrolysis

Leaching the sacrificial silica
support: Porous TiO, support

HEE NnISSAN G
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Approach

Sol-gel Synthesis

Precursors A+B "
i ethanol Pt deposition
In ethano (formic acid reduction)
LTI
m) ) 5 )| Catast
B < support
N4 Anneal under 4% H,
Water+ ethanol (or  Centrifuge and or air at T=200-
ethylene glycol) wash the material 1200°C
Inert atmosphere
« Precursors: Metal alkoxides W

» High water/ethanol to alkoxide ratio

-==!==“-i3-
HEE " nissan o
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Approa

Aerogel Synthesis

ch

Precursor

propylene oxide

Pure ethanol

and

Pressure

-

4

3,
e\ !
$

Wash the gel with Dry the wet gel with
pure acetone Supercritical dryer

¥

Thermal couple

gas in Lﬁ G.‘Xllilu.‘d gas
= o -
l heating zone |

. — . Anneal under 5% H,
Using supercritical drying, we can or air at T=200-

synthesize higher surface area material 1200°C

HEH nissan G
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Approach
Potential cycling to evaluate support and electrocatalyst
electrochemical stability/durability

Catalyst durability: Ex-situ and in Catalyst durability: Ex-situ and in-

situ carbon corrosion (start/stop) situ Pt dissolution (load cycling)
1 S 1 S 15V

w 1t w 4 . .
L | T | Open circuit
14 14 3

-+ 30s . s 3s
g <~/ V \.... g i > 095V Open circuit
© St overe 1.0V = \
_‘-'EE o 2 sleycle / ..... 'E o T I N N I B AW |
% = Scan speed: 0.5 V/s Open % - e T -
ot Initial hold potential circuit o [ 6 s/cycle

Open circuit - Initial hold potential
Time: Time
Protocol for simulating start-up/shut-down Protocol for simulating load cycling
phenomena phenomena.

The protocols recommended in solicitation DE-FOA-0001224 (next slide) will
also be employed.
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Approach

Potential cycling to evaluate support and electrocatalyst

electrochemical stability/durability —
Catalyst durability: Ex-situ and in Catalyst durability: Ex-situ and in-
situ carbon corrosion (start/stop) situ Pt dissolution (load cycling)
1s1
mu ‘S"S' 15V Iu A
L | I |
14 30 14
- S S
el ==/ V \... 2| S8 1o
S L 2sicycle 10V / S L initial hold Qpe.r;
S | Scan speed: 0.5 V/s S | potential ciredl
- Open o | e OV \........ Y
g_ Initial hold potential circuit 8 -ﬁ 2s/cycle 06V Yo,
- Open circuit i Scan speed: 0.5 V/s
Time Time
Support durability — support corrosion Catalyst durability — Pt dissolution

Electrolyte: 0.1 M HCIO,
Temperature: 60°C at NTCNA, RT at IIT
CV sweep rate of 20 mV/s; Room temperature CV
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Approach

Potential cycling to evaluate support and electrocatalyst
durability
* Three electrode cell with rotating
disk electrode

— Working electrode (WE) : Glassy
carbon coated with catalyst support

— Counter electrode : Pt foil

— Reference electrode :
Saturated calomel electrode (SCE)

— Electrolyte : N, saturated 0.1M HCIO,

« Support loading on W.E.: 200-600
Hg/cm?,, (material dependent)

- Ptloading: 17.2ugp/cm?,,
* Potential cycling protocol

-.-.::::5:_ 5 AMERIC, 15



Technical accomplishments o

DFT calculations for Ta-TiO, support

TiO, with 25% Ta

5 ) 1 3

[ pu v

4 “ |- il ,_-;“_
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» DFT calculations show that doping TiO,
with Ta from 25-50% reduces the

Band-Gap.

+ Ta-TiO, becomes increasingly metallic
and conductive.

W rumsane a °
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Technical accomplishments

N B S~
A/ z
; donor s of N : nor st
< =~
-3
r X S R A Z T Y T YZ T i 7 T
4% Nb 4% Mo
I . . ] .
* TiO, is a semiconductor, while
= O doping with Ta, Nb, Mo, and W
) S
- ‘ (4%) creates a n-type
: onor| states of . I
2 semiconductor with increased
: > conductivity =>“metallization”.
r X S R A Z T Y T YZ T
4% W
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Technical accomplishments o

Doping of TiO, with Ta, Nb, W, and Mo UNM
_— Defect Thermodynamics =
12 I; [ T | T T T A T
Pl S |
10 :\ ! —
5 o i
2 6l i
5 | ;
£ ap |
: T i
2 2f ! '
ok :
) i | . | . | . | & 1 ‘
-12 -10 -8 -6 -4 -2
WbCCTabCC NbbchObcc M D [GV] Moat Wat Taaleat

* Defect stability depends on the chemical potential of a dopant
* Doping with Ta results in the most stable doped structure;
 Thermodynamic stability of doped structures expected to change: Ta > W > Nb >

i missan ~\ .
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Technical accomplishments ~
Pt on TiO, doped with Ta, Nb, W, and Mo o

Pt(111) and TiO,(100) surface have similar cell
parameters
a=888A
TiO,(100) 0=29-20A
a=B=y=90°
a=832A
Pt(111) b=9.61A
a=B=V=90°
DFT optimized structure of Interaction between the layers
Pt(111) surface on TiO2(100) doped with 4% Ta. _ _— i .
(tan — platinum, red — oxygen, blue — titanium, pink Ainteraction=E(Pt ON TaTiO,)-£(Pt)-£(TaTiO,)
- tantalum)

One unit cell is shown.

« Strong interaction between the catalyst and the support layer (-0.08 eV per atom) >
high stability of Pt on doped TiO, to be expected
e Pt(111) and TiO,(100) have similar cell parameters — no strain on the Pt-TiO, interface

Hi missan ~\
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Technical accomplishments
. Pt on TiO, doped with Ta, Nb, W, and Mo

E, | Pu(111)
| Pu(111) on TaTiO,(100)
Pi(111) on NbTO,(100)

PDOS
\.ﬁ\qD

If//ﬁi.l<!0(:‘\"?\\/:\(“;\

-10 i -4 2, 0 3
E [eV]

d-band center relative to the Fermi level

€4-Er=-2.02 eV for Pt(111)

€4-E;=-2.34 eV for Pt(111) on TaTiO,

€4-E;=-2.32 eV for Pt(111) on NbTiO,

e4-E;=-2.28 eV for Pt(111) on MoTiO,

€4-E;=-2.30 eV for Pt(111) on WTIO,
the lowest d-band center (larger g4-E;) for
TiO, doped with Ta, followed by Nb, W, and
Mo

Projected Density of States (PDOS) of Pt(111) and
Pt(111) on TiO, doped with 4% Ta, Nb, Mo, and W

Energy of interaction between Pt and TiO, layer
doped with 4% Ta, Nb, Mo, and W calculated as -
0.13 eV, -0.08 eV, -0.10 eV, and -0.11 eV per atom

AleV

0.06

0.05

0.00

L &P Ti

—.8

| | I .
~(.6 -0.4 -(.2 0.
E(d-band center) / eV

Stamenkovic ot al, 2008,

* Doping with 4% Ta, Nb, Mo, and W alters electronic structure of platinum in a similar way.
* d-band center lowest for doping with Ta > Nb > W> Mo
* Based on the DFT calculated interaction energy between Pt and doped TiO,, Pt(111) the most stable

on TiO, doped with Ta, followed by W, Mo, and Nb.

NISSAN
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Technical accomplishments
Selected Metal Oxides Synthesized

— m— Conductivity E
—u— Surface arca I 10

\ Eo.l

\ L 0.01

. , \ L 1E-3
\ Co T
\ / \ = 1E-4

— \a FIES

\E—E/i/ %11;-6

|| E 1E-7
T T T
Nb- T10 W- T10 Ta-TlO Mo- T10 W- Nb O, Ta- Nb 0, Sb-SnO, Nb- -Sn0O,

Material

B.E.T. surface area (m’/g)
Conductivity (S/cm)

B.E.T surface area and electronic conductivity for the different doped metal
oxides evaluated.
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Technical accomplishments
Optimization of Doped Metal Oxide Properties

(different method)

AN\ 1.6
160 E —=— Surface area
- o Conductlvltyl 14
140 -
Bb 1.2
1201 Best support 2
~ o
S 1004 L 1.0 @
= z
: £
g 807 \ L 08 2
E )/ =
e 601 /" 30% mol/mol o o6 B
g /" Nb-doped TiO, -
« (annealing at 900°C 0.4
20 in H, for 3 hours)
0.2

I 1 I
Aerogel  EG(ethylene glycol)-Sol-gel Sol-gel
Synthesis method

Conductivity, 1.5 S/cm & BET surface area 130 m?/g (Q3 milestone reached)

22




Technical accomplishments -
Efficacy of Sacrificial Support Method

Step: Sger, m’/g Conductivity, S/cm| Temperature, °C
2 60 0.9 950

Physical properties of materials obtained after Step-1) high surface area TiO, following
KOH etch, and Step-2) TiO, doped with ~5 wt% Ta after second heat treatment.

« Upon doping with Ta and second heat
treatment, we sacrifice surface area for a 2-3
orders of magnitude increase in conductivity

« SSM is successful in yielding conducting and
high surface area doped supports

« Final surface area and conductivity of Ta-
TiO, support meet Q3 milestones.

23



Technical accomplishments
Optimization of Doped Metal Oxide Properties

(annealing temperature)

60
- B Surface area | 14
B Conductivity
50 - - 12
—~ 45-
20 -
NE 40 - 10 g
g 35 - 5% mol/mol Sb doped . %
o 30 Sn0, (annealing in air) S
€ 25- -6 2
: E
~ 20 =
X -4 O
m 151
10 -2
54
L0

600°C 800°C

Conductivity, 1.6 S/cm & BET surface area 50 m?/g (Q3 milestone reached)

HiE nissAan G
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Technical accomplishments
STEM: Sb-Sn0O,, ALD-Pt/Sb-SnO, and Commercial Pt/C

L

‘NISSAN B
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Electrochemical stability of Sb-SnO, support: start-stop proto

o 185

Current density (mA/ecm’)

-0.05

-0.10 5

-0.15 4

-0.20

-0.25 H

Current density (mA/em’)

0.15 1

0.10 1

0.05 1

0.00 +

_____ quinone/hydroquindne® 2

0 cycles
- — = 5000 cycles
= == 10000 cycles

I I
0.8 1.0 1.2

Sb,0; + 4H+ + 4e 2 Sb,0, + 2H,0
E, = 0.649 V vs. NHE?!

Sb-Sn0, (Sb:Sn=1:19)

0 cycles
= = = 5000 cycles
- — = 10000 cycles

0.0 0.2 0.4 0.6
E vs. RHE (V)

08 1.0 1.2

300 4 —®— Sb-SnO,(Sb:Sn=1:19, annealed 600°C at air)
X —@— Carbon (Vulcan XC-72)
o /’.
2 250 1 . | _
2 wy | dslzisy
3 £l
o, x|
AR A
[S>] Z L 10.{;‘ .....
= o . 2sfeycle YV taall,
L =
%‘ 5 Scan speed: 0.5V/s /
— 150 -l _ _Open |
) [l Initial hold potential circuit
ra) - | Open circuit
2
Time
g 100 — = - ]
L
N
<
50

g
Q
Z

0 I I 1

0 2000 4000 6000 8000 10000

Number of potential cycles
Sb doped SnO, (Sb :Sn =1:19) exhibited much higher
electrochemical stability than the benchmark carbon
material when using start-stop protocol

P NISSAN

=n
b RA&D AMERICAS
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1, E. Fabbri,* A. Rabis,Phys. Chem. Chem. Phys., 2014, 16, 13672—13681
2, D.A. Stevens a, J.R. Dahn a,b,*Journal of Power Sources 171 (2007) 331-339 26
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Technical accomplishments
RDE ECSA and electrochemical stability of Pt/Sb-SnO, catalyst

04| ALD-Pt/Sb-SnO, ECSA: ca.75m?/g — = - Catalyst protocol stability test
120 5 —=@— Support protocol stability test
02
% 0.0 100 {S=g—— 32 _ - ®
Z X - - -
-aﬁ 0.2 % so4 T T==a __._”__“.
k= ——— Initial sac R
Sl e | O Initial ECSA: ca.75m?/g.,,
3 —— 1000 cycles e8
e I A
7 . — |0000Li;:|?:s % E - open ;:ugs - sls1sv
0.0 10 12 g 40 - g :/ > 095V Open cirouit z [ 301/\/\_ /\
ZO S L oa0s \ E L~ ) \
0.8 = Rt S |. 2sidycle 10V *erens
0.6 ‘g I = eV &l Scan speed: 0.5 Vis 04
204 a E slcycle . £ Initial |hold potential cireuit
0.4 4 Initial hold potential Open cirtuit
NE, 029 Time Time
T 00 0 T 1
> o 0 2000 4000 6000 8000 10000
£ 04d _ Number of potential cycles
= — Imitia
E 069 300 cycles * Pt /Sb-SnO, was extremely stable under both catalyst
© —_— cycles
8 Ul T e evdes loading and start/stop support protocols.
1.0 - - ‘it hold posestial - .
—— e * BoL RDE ECSA for Pt/HSAC benchmark was 85m?/g.
00 02 04 06 08 1.0 1.2 1.4 Pt
E(V) vs. RHE and for Pt/Sb-Sn02 was ca.75m?/g .,
Faissan G
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Remaining Challenges and Barriers
SEM pictures of Pt/C and Pt/MO* catalyst layers

Pt/MO Catalyst Layer

Pt/HSAC Catalyst Layer

v

Catalyst |

. Layer = _

Gas Diffusion Layer

10.0kV 9.1mm x2.00k BSE3D 30Pa

PYHSAC Pt/MO View [ 1 |10 (|, Mydia) "-]
si=—— =3 e
CL thickness (um) 11 5.5 Vean " C/ fidrary dyEW J
l/C mass ratio 0.9 0.9 @ MO is denser than carbon
B.E.T. surface area(m?g) 313 39 0O The PYMO CL is much thinner than Pt/HSAC.
€ (ionfc;;zg\r/];)lume 0.21 066 < Theionomer volume fraction (g;) is higher in PtYMO
0 Optimize MEA composition and design

i missan ~\ )
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Remaining Challenges and Barriers

Task Milestone Descriotion Milestone Verification Process” | Anticipated
Number P Date/Quarter

Milestone Demonstrate SMSI; Meets Table 2

7.1 2 0 [ RIS et (ST durability targets in RDE Ry
: o ; :
Milestone Pt/DS catalyst Demonstrate 10@ !ncrease in M24/Q8
8.1 mass activity
B.E.T. area >70 m?g%; particle size
Milestone  2g of at least one doped <70nm; conductivity ; > 0.2 Scm;
: . e e M27/Q9
5.2.1 oxide using SSM Stability and durability in RDE per
DOE metrics
Milestone 20-40wWt%Pt; > 70 m?gL; Pt

Deliver 2g of Pt/DS

6.2.1 catalyst to NTCNA

Go/No-Go

particle size 3-6nm; meets DOE M30/Q10
2020 durability targets

THEwssan a *
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Remaining Challenges and Barriers

Task Milestone Descrition Milestone Verification Process” | Anticipated
Number P Date/Quarter

Demonstrate “End Project”

Mlllegt;me Pt/DS catalyst durability metrics and at least 80% M33/Q11
' of mass activity metric
Milestone In addition to Milestone 6.2.1,
6.2 Pt/DS catalyst meet “End Project” BolL mass M36/Q12
o activity target
Milestone Deliver cost model Specify cost of Pest 2 Pt/DS M39/Q13
11.1 materials
Milestone Deliver six 50 cm? active Meet “End Project” durability,
12.1 rea MEAS to DOE activity, and performance targets M42/Q14
Go/No-Go in Table 2

T mssan A 30




Collaboration

Washington University in St. Louis

e Lead Pl and Technical PoC: Vijay K. Ramani, Roma B. and Raymond
H. Wittcoff Professor of Washington University in St. Louis

e Metal oxide synthesis and characterization, RDE testing (ORR
activity and electrochemical stability), PEFC evaluation

Nissan Technical Center, North America

* Pl and Technical PoC: Nilesh Dale (Manager-Fuel Cell and
Business Research)
* Electrochemical evaluation of the catalysts in PEMFC ""::;q;“““”“"”

University of New Mexico

e Pl and Technical PoC: Plamen Atanassov (Distinguished Professor
of Chemical and Biological Engineering)

e Modeling of doped MO conductivity and SMSI (DFT), scale-up of
doped metal oxide synthesis o\

THE UNIVERSITY of
NEW MEXICO

=223 "
g;iﬁhmssm\l m
"':. RAD AMERICAS .
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Collaboration

‘Facility and Equipment Capabilities S

d Scanning Electron Microscope (SEM, O Rotating Disk Electrode: ex-situ
STEM, EDS) catalyst performance and durability
O X-ray Fluorescence Spectrometer (XRF):
To determine the Pt loading. Catalyst evaluation
O X-ray Photoelectron Spectroscopy (XPS): '
To determine SMSI. e ‘ﬁ
O 5 fuel cell test test-stations (Hydrogenics) - g

g "
.‘m ==

MEA fabrication & evaluation

O Expertise in the fabrication and
characterization of catalyst layer (CL):
ionomer volume fraction, proton transport

resistance, and oxygen transport ‘,r—f
resistance. B
P ':f"e
Physical analysis :ﬂ-?:
- XRF | gm |
5 MEA test
stations
-

& ,
ﬁ’f

""::=. o pl 32
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Proposed Future Work

FY 2017

 WUSTL: Materials synthesis and characterization
v" Synthesis and characterization of Sb doped SnO, and other doped metal oxides

(Ta,W,Nb doped Ti0,)
v" Electrochemical evaluation of support and Pt/MO stability
v" Investigation of SMSI in Pt/doped-metal-oxide systems
v" Measurement of BoL ECSA and ORR activity of selected catalysts

* Nissan North America Inc.: durability/performance testing
v" Accelerated test protocols on materials provided by WUSTL

v' Fabrication / testing of sub-scale and 50 cm?> MEAs

e University of New Mexico
v DFT calculations: conductivity and SMSI of relevant doped metal oxides

v" Characterization of the doped metal oxides and derived catalysts

v" High surface area support synthesis by SSM.

g nissAN ﬁ
"._-. RA&AD AMERICAS -
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Summary

Objectives and approach:
o Synthesize doped metal oxides for catalyst supports

o High conductivity and BET surface area

o Exhibits SMSI and corrosion resistant (attaining DOE 2020 targets )
Relevance

o Material-level mitigation strategies can solve cathode/anode durability issues

Accomplishments
o DFT framework in place to study effect of doping on conductivity

o Successfully synthesized Niobium doped Titanium oxides with conductivities of
1.5 S/cm and B.E.T. surface areas of 130 m?/g, and Antimony doped Tin oxide
with conductivities of 1.6 S/cm and B.E.T. surface areas of 50 m?/g.(Achieved the
Q3 milestone)

Collaborations

o Washington University in St. Louis
o Nissan Technical Center, North America
o University of New Mexico

=2322222".
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Approach

Electron conductivity measurement

SS Plates

PEEK

Copper

electrodes |

* The sample powders were pressed (25 Ib x in) into pellets of 5 mm in diameter and
0.3-0.5 mm in thickness using a custom built conductivity cell.

« Sample conductivity was calculated from the slope of LSV curve

« Vulcan Carbon Conductivity (XC72R, 250m?/g): 51 S/cm

--------
-------- -
---------
HHH o |
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Technical accomplishments

Benchmark Data
1.2
. —4—Pt on F type Bol —&—Pt on F type EoL 151
H,/Air. 1 barg, 80C vP P " Islssv
. I L
Cathode Ioadlng :0.35 mglcm2 —4—Pt on Graph E type BoL ——Pt on Graph E type EoL o
1 “5 B 30s
-=-Pt/RTO Bol —-o—Pt/RTO Eol Zr AR SR TIPS
_g - 2 slcycle v e
—e—Pton E type Bol —o—Pton E type Eol G | Scan speed: 0.5Vis /
= pen
0.8 st Initial hold potential circuit
- Open circuit
Time

Voltage (V)
o

E carbon = HSAC
EA Carbon = LSAC
F Carbon = Durable HSAC

0.4

02 RTO = RuO2-TiO2

Pt/RTO is most stable
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Current Density (A/cm2)

0 Most of the carbon supports degrades severely under start-stop cycling
0 Only metal oxide support (RTO) showed excellent durability
O Challenge: Improve the performance with low Pt loading and metal oxide support
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Technical accomplishments

Benchmark Data

" H,-Air, 80°C, 100RH, 200 kPa,,.

1 ! .
l —8—-50% Pt/HSAC, cathode Pt loading = 0.1 mg/cm2, BolL
—0-50% Pt/HSAC, cathode Pt loading = 0.1 mg/cm2, EoL

o 8 —#-40% Pt/Vulcan carbon, cathode Pt loading=0.1 mg/cm2, BolL

~—-40% Pt/Vulcan carbon, cathode Pt loading=0.1 mg/cm2, EoL

Cell Voltage (V)
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Potential vs. RHE
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0 Both HSAC and Vulcan carbon show severe degradation after 1000 cycles of carbon corrosion protocol.
O Durability of catalysts made from other carbon supports (eg. graphitized carbon and F type) under carbon
corrosion protocol at low Pt loadings (~0.1 mg/cm?) are currently under investigation.
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Technical accomplishments

Benchmark Data

H,-Air, 80°C, 100RH, 200 kPa,,

-8-50% Pt/C, cathode Pt loading: 0.1 mg/cm2

I

-8-20% Pt/C, cathode Pt loading: 0.1 mg/cm2
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U Lower mass transport resistance is
observed in MEA with 20% Pt/C
compared to 50% Pt/C. This is
attributed to the catalyst layer
thickness.

Thinner electrodes made from 50%
Pt/C may result in non-uniform catalyst
layer thickness and non-uniform
ionomer distribution around the Pt
catalyst.)

Resistivity (mQ-cm?)
(I

To understand mass transport losses with different
catalyst layer thickness, O, gas transport resistance
measurements are on-going

O Catalyst layer optimization (CL thickness, ionomer loadings) for low Pt loading electrodes with metal oxide
supports would be key to lower the O, gas transport resistance and improve the performance.
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Technical accomplishments

Gas Transport Resistance in a CL —

1. Estimate reactant gas transport resistance from the limiting current measurement.

2. Analyze the relation b/w the resistance and the total gas pressure to separate “other
transport resistance”.

Reactant gas transport resistance is the inverse

The gas transport resistance is proportional to the

1.0 § number of the slope “A”.
oo 200  total gas pressure.
= 0s 200kPa 180
<. 160 |
= 2 w_ 140 |
s 250kPa | o
T 05 -
& <100 | Extrapolated .
5 4 E g |  intercept ) _T
%}Ez i nz;: o Slope llBII
- 0.1 4 ” P Lo
0.0 - N Slope “A”. . . 20
0o 2 4 6 8 10 12 0 ‘
Reactant gas partial pressure / kPa 0 50 1 150 200 250 300
\-z / Xotal pressure / kPa
‘IIIIIIII IIIIIIIIIIIIIIIIIIII.‘
Total gas Transport resistance i Other Knudsen diffusion .
transport by molecular diffusion = transport | Transport through -
resistance 3 resistance -'onomer .
R R)PHR + R i E
— ] u
— u
total O.m 1 0.,othern catalyst layer (CL), :
3 .
[ WJEQQL.II;MEL... snmun?
Slope “B” Intercept (R, is calculated from R,)
HE missan G K. Sakai et al., ECS Trans. 25, 1193 (2009).
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Technical accomplishments

Gas transport resistances

U H, gas transport resistances of anode catalyst layers made from Pt/RTO and Pt/graphitized Ketjen Black
(TEC10EA30E) were measured. Pt loading was maintained at 0.05 mgp/cm?.

U O, gas transport resistances of cathode catalyst layers made from Pt/Ketjen Black (TEC10E50E) were
measured. Pt loading was maintained at 0.35 mgp,/cm? as cathode
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B Using limiting current experiments, gas transport resistances for both anode and cathode
catalyst layers was determined.

B This diagnostic will help with the optimization of catalyst layer by varying catalyst layer

porosities, ionomer content.




Technical accomplishments

_Gas Transport Losses in CL for Low PGM [

= 60 = Rib 0.2mm / Channel 1.0mm
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<]
lonomer 8
) Current Level
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. . . E
B Gas transport loss in CL is inversely 3
Better Mass Transport (Gas, Proton)

>

proportional to Pt loading, indicating
local gas transport dominates gas
transport in CLs.

Current Density / A cm™2

ﬁ T. Mashio et al., ECS Trans. 11, 529, (2007).
- K. Sakai et al., ECS Trans. 25, 1193 (2009). 41
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‘Remaining Challenges and Barriers
TEM images of Pt/C and Pt/MO*

Pt/HSAC
(TEC10E50E)

Pt/MO*

V. Ramani, DOE AMR 2012

T W

O There are significant differences between Pt/C and Pt/MO

O Pt particle size, Pt dispersion/agglomeration, Pt particle density.
O Engineer wettability

* MO= metal oxides
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