Novel ionomers and electrode structures for improved PEMFC electrode performance at low PGM loadings

School of Engineering

DoE Annual Merit Review

Washington, DC, June 6, 2017

Project ID # FC155: PI: Andrew Haug, 3M

<u>Team:</u>

3M: M. Lindell, T. Matthews, J. Abulu, M. Yandrasits, A.
 Steinbach, M. Kurkowski, G. Weatherman, G. Thoma, I. Khan
 Tufts University:

Iryna V. Zenyuk, D. Sabarirajan, S.Normile Michigan Technical University.:

J. Allen, K. Tajiri, E. Medici, and team **FCPAD**: LBNL (A. Weber, A. Kusoglu), NREL (KC Neyerlin), ORNL (K. More), LANL (R. Borup), ANL (D. Myers)

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

OVERVIEW

<u>Timeline</u>

- Project start date: 10/1/16
- Project end date: 9/30/19
 - 6 of 36 months complete

Barriers addressed

- Cost, durability, performance
- Operational robustness

<u>Budget</u>

- Total Project Budget: \$3,245,349
 - Total Recipient Share: \$649,071
 - Total Federal Share: \$2,596,278
- Total DOE Funds Spent*: \$320,000
 - * As of 3/31/17

** Sub expenses as of 3/31 also

Partners

- Tufts University
- Michigan Technical University
- FCPAD
 - LBNL, LANL, ANL, ORNL, NREL

Relevance & OBJECTIVES

- Novel, electrode-focused ionomers will be generated, focusing on combining conductivity with improved O₂ transport
- Understand and Optimize cathodes
 utilizing NSTF catalyst powder
- <u>Integrate</u> ionomers with NSTF powder electrocatalyst to develop an advanced cathode of high activity and durability
- <u>Guide</u> development with state of the art and <u>novel characterization &</u> <u>modeling</u> techniques, including inoperando nano-CT and electrode pore network models.

METRIC	2020 ¹	Integrated	PRO-
	Target	Cathode	GRESS
PGM total loading, mg/cm ²	0.125	0.125	0.102 ²
PGM total loading, g / kW [150 kPa abs]	0.125	0.125	0.172 ²
Mass activity @ 900 mV iR-free, A/mg	0.44	0.44+	0.28
SUSD AST, %ECSA loss	<20 %	N/A	
SUSD AST, mV loss @ 1.2 A/cm ²	< 5%	< 5%	N/A
Support AST, % mass activity loss	< 30	< 30	28% (Pt)
Electrocatalyst AST, mV loss @ 1.5 A/cm ²	< 30	< 30	NA
Electrocatalyst AST, % Mass activity loss	< 40	< 40	45% (Pt)
MEA Robustness (cold/ hot / cold transient)	0.7/0.7/0.7	>0.7/>0.7/>0.7	0.6/NA/0.6 ³
¹ All metrics and DOE 2020 ta ² Assume using 0.025 mgPt/cm ³ 3M transient protocols used for	rgets are taken f 2 anode or NSTF testing	L from DE-FOA-0001	412

APPROACH: Key Barrier Cathode Transport limitations

- Cathodes at SEF's below 100 cm²_{PGM}/cm²_{planar},
 - Transport losses become significant
- NSTF cathodes break this trend
 - SEF's as low as 10.
- Likely that <u>oxygen transport</u> <u>through ionomer</u> near the reaction site is a key limitation
- FC155 goal is to
 - understand and improve lonomer, bulk & local electrode transport
 - Maintain NSTF activity and durability

A. Weber, J. Mater. Chem. A, 2014, 2, 17207–17211

APPROACH: Team & Collaboration

APPROACH: Project Breakdown

	NO -NOGO in RED			BP1		P1		BF	BP2			BP	3
				2017		017		2017		17			2019
	TASK	OWNER	4	1	2	3	4	1	2	3	4	1	2 3
	TASK 1: Ionomer development/evaluation		0	0	0	0	0 0	0 0	0	0 0	0	0	
	1.1: Develop, clean, characterize ionomers with improved O2 transport & conductivity	3M	x	х	х	x	x	x	x	x	×	х	
	1.1.0: Baselines. PFSA 825 EW. PFIA (3M825 backbone)	3M	Х	Х									
	1.1.1: Phase 1. 3+ different Rf groups, sidechain imid content, x=0 and 1	3M		Х	Х	Х	Х						
	1.1.2: Phase 2. 1+ MASc (x>1), 3+ different Rf groups.	3M				х	Х	х	Х				
IONOMER	1.1.3: Phase 3. 1+ more advanced ionomer.	3M						х	Х	Х	Х		
	1.2: Ex-situ thin film characterization, RDE characterization of ionomer on Pt	FCPAD/MTU			Х	х	X	х	Х	Х	Х	Х	
	1.3: Fabricate electrodes, CCMs and MEAs with new ionomer and Pt/C catalyst	3M		Х	Х	Х	Х	х	Х	Х	Х	Х	
	1.4. Ex-situ bulk characterization of ionomer films and electrodes	3M/Tufts/MTU			х	х	х	х	х	Х	х	Х	
	1.5: Extract electrode pore size distributions and contact angles vs ionomer type	Tufts/MTU			х	х	х	х	х	Х	х	х	
	1.6: In-situ ionomer vs. electrode HCD, durability, water distribution, O2 permeability	3M/Tufts/MTU/ FCPAD		х	х	x	x	x	x	×	x	x	
	ТАЅК	OWNER	4	1	2	3	4	1	2	3	4	1	2 3
	TASK 2: NSTF electrode Development		0	0	0	0	o o	0 0	0	0 0	0	0	o 0
	2.1: Manufacture NSTF powder catalyst, NSTF powder electrodes, and MEAs	3M	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	
	2.1.1: Pt only NSTF	3M	Х	Х	Х	Х	Х	Х					
	2.1.2: Pt-alloy NSTF	3M			х	х	х	х	х	Х	х	Х	x
NSTE	2.2: Evaluate impacts key structural variables (whisker, ionomer, ECA) on water content, location, and permeability	MTU			х	х	х	х	x	×	×		
	2.3: Evaluate performance and transport limitations vs. key NSTF electrode variables	3M/Tufts/MTU /FCPAD		х	х	х	х	х	x	x	x		
	2.4: Analyze NSTF electrode structure using tomography, STEM, in-operando nanoCT	Tufts/FCPAD		Х	х	х	х	х	х	Х	Х		
	2.5: Evaluate NSTF electrode durability vs ECAs and catalyst compositions	3M/FCPAD				Х	Х	Х	Х	Х	Х	Х	
	2.6: Evaluate activity, durability, performance impact of best-in class NSTF alloys	3M/MTU/FCPAD				x	x	x	x	Х			
	TASK 3: Electrode Integration						0	o c	0	0 0	0	0	0 0
	3.1: Evaluate ionomers with optimal characteristics for NSTF electrode operation.	3M/TUFTS/MTU					Х	Х	Х	Х	Х	Х	
INTEGRATE	3.2: NSTF modification for peak powder electrode operation	3M						X	Х	Х	Х	Х	X
	3.3: water imbibition, structural characterization of new and decayed electrodes	Tufts/MTU/FCPAD							х	Х	х	Х	X
	3.4: Optimized NSTF+new ionomer electrode MEA integration.	3M								Х	Х	Х	XX
	TASK 4: Model development		0	0	0	0	o o	0 0	0	0 0	0	0	0 0
	4.1: Adaptation of PNM to electrode	MTU	Х	Х	Х	Х							
INIODEL	4.2: Link PNM to MEA model	MTU/Tufts/FCPAD		Х	Х				Х	Х		6	х х
	4.3: Input new physics, and parameters, validate	MTU/Tufts		Х	Х	X	X	x	X	X	X	X	x x
	TASK 5: Project Management	3M	0	0	0	0	o o	o c	0	0 0	0	0	0 0

Progress and Objectives Milestone Summary Table

				_	
TASK	TYPE	Milestone Description	Verification Process	DATE	0/
TASK		(Go/No-Go Decision Criteria)		Q/M	/0
1,1, 2.1	MLS	Synthesize first ionomer containing bis(sulfonyl)imide only containing protogenic groups devoid of sulfonic acids – at least 100g of > 10% solids in water alcohol solution. 20 grams of baseline 25 µg Pt/cm ² [geometric] NSTF powder prepared.	ICP, Conductivity for ionomer	1/3	100% ICP
1.6, 2.3	MLS	Setup and validation of DoE AST tests, electrode performance and O_2 transport script, and carbon-ionomer dual layer test script. Test TKK 10V50E catalyst with 3M825 ionomer at 3 IC ratios and 3 cathode Pt loadings.	DOE AST's, report	2/6	100%
1.2, 1.4, 2.2	MLS	Complete characterization of baseline ionomer, Pt/C, and powder NSTF Pt electrode materials. Characterizations to include wettability testing / water imbibition, capillary pressure and breakthrough pressure, percolation testing as a function of RH, and electrode layer analysis using SEM/EDS, TEM, and AFM.	Report	3/9	66%
2.6	MLS	NSTF powder electrode achieves mass activities >= 0.30 A/mg Pt	DOE AST	4/12	96%
1.4, 1.5, 2.4	MLS	Develop nano CT method and test baseline & NSTF materials & provide pore and ionomer distributions.	Report on morphology of baseline vs. NSTF electrodes	4/12	66%
4	MLS	PNM adapted to the electrode with the model delivering predictions at 40 °C and 80°C.	Report/ demonstration	4/12	50%
1, 2	GNG	1) NSTF powder electrode ECSA >= 15 m ² /g and SEF > 40 m ² /m ² , 0.7 robustness factor and 2) lonomer material developed exceeds the bulk O_2 permeability of the baseline 3M825 ionomer, with similar or better proton conductivity to 3M825	 Evaluated in MEA using DOE protocols/ASTs 3M O₂ permeability method(s) 	4/12	95% / 70%
4.3	MLS	Reaction-kinetics model is consistent across full potential range & converges within PNM framework. PNM-continuum model framework converges and predicts polarization curves for baseline and NSTF electrodes for two temperatures $T = 40 ^{\circ}C$ and $80^{\circ}C$.	Report including predictions at DOE AST	5/15	

Progress and Objectives

Milestone Summary Table

Recipient Name: 3M CORPORATION / Energy Components Program

Project Title: Novel ionomers and electrode structures for improved PEMFC e		Novel ionomers and electrode structures for improved PEMFC electrode performance at low PG	ctrode performance at low PGM loadings				
TASK	TYPE	Milestone Description	Verification Process	DATE			
		(Go/No-Go Decision Criteria)		Q/M			
2	MLS	NSTF Cathode ECSA >= 25 m ² /g.	DOE ASTs	6/18	100		
4.1, 4.2	MLS	MTU/Tufts: Baseline structures input to PNM. Electrochemistry connected. Initial fitting completed. PNM delivering initial predictions.	Report on initial predictions	7/21			
2	MLS	NSTF activity >=0.4 A/mg Pt in an electrode. 0.2 g/kW with NSTF containing electrode.	DOE ASTs	8/24			
1,2	GNG	lonomer exceeds 3M825 O_2 perm by 33% with similar or improved conductivity. 0.35 A/mg Pt, 0.175 g/kW power output	3M O ₂ perm	8/24	40%		
4.3	MLS	MTU/Tufts: PNM - continuum predicts pol curves for T = 40 and T = 80C within 10% for NSTF and baseline electrodes. Capillary pressure diagrams vs ionomer predict within 10%	Report	9/27			
2.4	MLS	Tufts: In-operando Nano-CT experiments for visualizing water distribution, local hydrophobic and hydrophilic regions. Electrode capillary pressure diagrams generated and provided to PNM/MEA model and report prepared.		9/27			
4	MLS	PNM predicts pol curves for T = 40 and T = 80C within 10% for NSTF and baseline	Report/ DEMO	9/27			
3	MLS	Support cycle stability DoE targets achieved. < 40 % activity loss during catalyst cycling AST.	DOE ASTs	10/30			
3	MLS	Cathode activity >=0.44 A/mg PGM in an electrode. Metal stability <=30% activity loss. 0.125 g/kW with NSTF powder containing electrode.	DOE ASTs	12/36			

<u>APPROACH:</u> ELECTRODE lonomers

2 methods to attack transport limitations

Improve electrode ionomer O2 permeability

APPROACH: Powdered NSTF

- Utilize powdered NSTF (Task 2)
- Utilize a dispersed electrode "package" (Task 1)
- Optimize in Task 3

- Powdered NSTF electrode
 - 10-100X thicker than NSTF
 - Contains ionomer
 - Improved operational robustness
 - Not constrained to liner NSTF loadings

APPROACH: Test Methods (Vision)

Characterize electrode transport: in-situ/ex-situ

- lonomer O_2 perm
- Electrode gas:
- Electrode H+
- Performance/robustness/AST's
- C-lonomer films between CCM / Tufts ess/AST's

GM Method (Zhang et al, 2013) / 3M

Carbon ionomer films atop CCM / 3M

LANL/NREL/3M/MTU

Intermediate

- Water imbibition
- NanoCT
- In-operando NanoCT Tufts

LOCAL transport

- Differential O₂ xport
- Ionomer thin film
 - GISAXS, WAXS, etc
- STEM, etc
- Catalyst

MTU Washburn method

3M / NREL

LBNL / MTU

ORNL

ANL

APPROACH: Pore Network Model

RESULTS: Novel Ionomer Development

- Bulk O₂ perm characterization
 - Validated GM (Zhang ECS 2013) method
- Imide 2 showing possible improvement of 3M825 baseline

- <u>MASC</u> ionomers show high conductivity, as expected
- Initial novel <u>IMIDE</u> ionomers approaching baseline conductivity

Combined results leading toward **BP1 GNG** deliverable for Task 1

"BP1 GNG: Exceed 3M825PFSA and bulk O2 perm simultaneously, or demonstrate path toward such"

RESULTS: Novel Ionomer Development

- Testing with TKK 10V50E: Baselines, trends
 - 5 loadings
 - 4 I/C's
 - 4+Ews
 - MLS Q2
 met

- Increased performance @ lower I/C
- Little to no specific activity gain between I/C=0.6 – 0.9
 - Broadening EW+ I/C range
 - FCPAD look into ionomer coverage at low IC ratios

K. Shinozaki et al. / JPS 325 (2016) 745

 Task 2 GOAL: Improved transport, activity, performance with reduced ionomer amount

RESULTS: Novel Ionomer Development

RESULTS: Powdered NSTF

RESULTS: Powdered NSTF

- Powdered NSTF
 - Eliminates geometric dependence
 - Allows thicker electrodes
 - Leads to enhanced robustness
- Task 2 BP1 GNG Targets met
 - ECSA
 - SEF
 - Robustness

RESULTS: Powdered NSTF

- Initial mass activities of PtdNSTF
 - Pt: 0.09 to 0.17 A/mg
 - PtCoMn: 0.26 0.28 A/mg Pt
 - O₂ Tafel extraction

 MLS Q4 = 0.30 A/mg Pt

- There may be some activity loss compared to NSTF
 - Retains ~70% classic NSTF activity

RESULTS:

Powdered NSTF

- First alloy downselect from FC143 tested (Task#2)
 - PtNi#1
- Good activity
 - 3-4.5X Pt reduction with 0-5 mV performance loss @ 0.1 A/cm²
 - GNG BP1, MLS Q6
- Good performance
 - 0.171² g/kW
 - MLS Q6, GNG BP2
 ²assumes 0.025 mgPt/cm² anode
 ²0.6V, 80/68/68C, 7.5 psig H₂/Air
- Continue to optimize electrode package to accept transition metals

RESULTS: Powdered NSTF DoE AST

METAL AST just begun

- 10V50E loses 90+% ECSA
- NSTF 25Pt (as Pt or alloy) loses ~40-45%
- FC143 downselect improvements will be evaluated in 2017 & 18

SUPPORT AST

- Dispersed NSTF shows better stability than 10V50E
 - SUPPORT#2 survived 20K cycles
 - MLS Q10 achieved

RESULT: Morphology of 3M Ionomer GISAXS

• PFSA:

2

2

2

- Weak phase-separation
- Some domains are parallel to the substrate
 - O.P. = 0.50 0.60
 - Could be a proxy for transport limitation

PFIA:

- Stronger phase-separation
- Well-defined morphology (i.e. Hydrophilic domains)
- Closer to random alignment
 - O.P. = 0.40 0.45
 - Favorable for transport

* Both ionomers have the same backbone length. Thin films spin cast on Si. GISAXS under saturated conditions.

PFSA data from: Kusoglu et al. Adv. Functional Materials, 26 (2016) 4961-4975

2033 Series Volume Fraction

Results: Tufts NanoCT

COLLABORATIONS

DoE FC155

- **3M**: A. Haug, M. Lindell, T. Matthews, J. Abulu, M. Yandrasits, A. Steinbach, M. Kurkowski, G. Weatherman, G. Thoma, I. Khan, 3M CRL
- **Tufts U**.: NanoCT, H+ conductivity, modeling
 - Iryna V. Zenyuk, D. Sabarirajan, Stanley Normile
- **Michigan Tech.:** Water transport, model development, performance testing
 - Jeffrey Allen, K. Tajiri, E. Medici, and team
- **FCPAD:** STEM, GISAXS, WAXS, AST testing, differential testing, RDE
 - Adam Weber (PoC), LBNL, LANL (R. Borup), ORNL (K. More), ANL, NREL (K. Neyerlin)

- FC143: Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports
 - Johns Hopkins, Purdue University
 - ORNL, ANL, NREL, FCPAD
- FC144: Highly-Accessible Catalysts for Durable High-Power Performance
 - General Motors, 3M, Carnegie Mellon, Cornell University, Drexel University, NREL
- NREL
 - 3M PFSA CCMs for differential testing and development

SUMMARY

- Significant materials generated for this project (MLS Q1, Q2)
 - NSTF and lonomers
- Ionomers showing paths toward BP1 GNG (O₂ permeability and conductivity)
 - MASC: Increased performance, Lower IC = Better transport
 - IMIDE: As good/better bulk permeability
- Dispersed NSTF
 - Excellent ECSA & areas meeting BP1 GNG, MLS Q6
 - Metal/support durability gains show path to durability milestones
 - NSTF durability largely remains
 - Good activity & performance approaching BP1 GNG, MLS Q6
- Characterizations & Collaborations
 - Underway and at or ahead of Q3 and Q4 milestones
- Model
 - Framework developing toward Q4 deliverable

FUTURE Work

- Ionomers
 - Continue IC series testing through Q3
 - Combine with alternative Pt/C catalyst
 - Lower loading than 10V50E
 - Surface carbon
 - Enhance IMIDE conductivity by close of Q4
- dNSTF
 - Examine transport characteristics with differential testing by Q4
 - Integrate with best dispersed package (ionomer+support)
 - Transition metal analysis in Q3 and Q4
- AST testing
 - Complete for all baselines by Q3

- FCPAD
 - Examine dNSTF baseline with STEM
 - Examine IMIDE#2, MASC#2 with GISAXS, differential testing, RDE
 - Examine low I/C ratio vs. standard I/C ratio structural differences
 - STEM of dispersed NSTF to evaluate ionomer coverage (Q3-Q4), impact of support type (Q5-6), effect of operation and decay (Q6-7)
 - Baseline AST testing, differential testing (Q3-Q8)
- Tufts
 - nanoCT, in-operando CT developments
 - Hydrogen conductivity vs. I/C and ionomer type
 - Compare to nanoCT data for ionomer
- MTU
 - Complete PNM framework (Q4)
 - Provide water imbibition and transport data for key series (I/C and EW) (Q3-4)

Technical Back-Up Slides

APPROACH: Test METHODS

METHODS

- Differential cell testing
- Status: UNDERWAY
 - Extract local limitations UNDERAY
- Use with
 - dNSTF electrodes
 - Standard electrodes
 - Different ionomers in electrodes
 - Carbon-ionomer films atop electrodes

ILIM, 85 C

Carbon-Ionomer films

APPROACH: TEST Methods / Carbon-Ionomer layers V Washburn Method 2e⁻ 2e⁻ **CARBON-ION** Membrane Membrane Effective Surface 03 LAYER Catalyst layer Energy Catalyst laye ⁵seudo CL Pore Volume Ionomer Uptake CATHODE H_2 H_2 Liquid Permeability H+ H^{\dagger} MEMBRANE Mass² vs. time ×10⁻⁴ Hexane ANODE Water -Acetone Methano $H_2 \rightarrow 2H^+ + 2e^ 2H^+ + 2e^- \rightarrow H_2$ -Toluene Working Electrode Counter/Reference 02.5 Electrode Mass School of **Tufts** Engineering 10⁻¹ -**GDS Curve** 80/80/80C, S=2.0/2.5, P=7.5/7.5 PSIG Carbon layer 0.1 0.2 0.3 0.4 0.5 0.7 0.8 Effective Conductivity (S/cm) 0.6 0.9 O CARBON, IC=MID, AIR Nafion 212 Time (s) CARBON, IC=MID, HELOX 0.9 CARBON, IC=LOW, AIR ----- Nafion(lit) 10^{-2} CARBON, IC=LOW, HELOX > 0.8 CONTROL AIR e, 0.7 **Hele-Shaw Method Ö** 0.6 Voltag 10⁻³1 0.5 0.4 Gas Permeability More ionom 0.3 Cell Liquid Permeability 10^{-4} 0.2 Capillary Pressure \cap 0.1 Percolation Pressure 0.0 0.10 0.5 0.15 2.0 Ionomer Uptake 25 50RH %75 125 Current Density, A/cm² 0 100 **PROTON TRANSPORT GAS TRANSPORT** WATER TRANSPORT

APPROACH: Test METHODS

METHODS

- Bulk O₂ permeability
- Use with
 - Ionomer development
- Key attributes
 - Pt and Ir electrodes
 - Allows in-cell testing: T, RH, xO₂

Figure 1. Schematic illustration of the experimental setup for the electrochemical measurement of the O_2 permeability through a polymer electrolyte membrane.

APPROACH: GISAXS

• GISAXS images and orientation parameter

 $O.P. \rightarrow 0$

O.P. ~ 1

PFSA is more like this one (but still with some random orientation) PFIA is like this one

 $O.P. \rightarrow 0.33$

For Transport, it is believed that lower O.P,'s are less inhibitive for transport