Advanced Electro-Catalysts through Crystallographic Enhancement

Jacob S. Spendelow Los Alamos National Laboratory June 7, 2017

Project ID FC161

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline:</u>

- Project Start Date: October 1, 2016*
- Project End Date: September 30, 2019

*Subcontracts in place February 2017

Budget:

- Total Project Budget: \$3.335M
 - Total Recipient Share: \$335K
 - Total Federal Share: \$3M
 - Total DOE Funds Spent: \$195K*

*As of 3/31/2017

Barriers

- A. Durability
- B. Cost
- C. Performance

Partners

- LANL (J. Spendelow, Y.S. Kim, Y. Pan)
- Brown University (S. Sun, A. Peterson)
- University of Pennsylvania (C. Murray)
- SUNY University at Buffalo (G. Wu)
- EWII Fuel Cells (M. Odgaard)
- Pajarito Powder* (B. Zulevi)
- 3M* (M. Yandrasits)

*No cost partners

Relevance

<u>Objectives</u>

- Design active and durable nanoparticle ORR catalysts based on fully-ordered intermetallic alloys on highly graphitized nitrogen-doped carbon supports
 - Binary and ternary alloys of Pt with Fe, Co, Ni, other base metals
 - Initial catalysts will contain Fe, but project will transition away from Fenton-active metals
 - Catalysts will be supported on Fe-free, highly graphitized N-doped C supports
- Demonstrate and validate catalysts in high-performance, durable 50 cm² MEAs

Project Targets:

- Mass activity > 0.44 A/mg_{PGM} @ 0.9 V_{iR-free}
- <40% mass activity loss after catalyst AST
- <30 mV loss at 0.8 A/cm² after catalyst AST
- PGM total loading < 0.125 mg/cm²

- Power density > 1 W/cm²
- <40% mass activity loss after support AST
- <30 mV loss at 1.5 A/cm² after support AST

Approach

Use atomic-level ordering to increase performance and durability of Pt-based catalysts

- Synthesize intermetallic nanoparticles (FePt, CoPt, NiPt, ternaries)
 - Prepare <u>fully-ordered cores</u> to stabilize base metal
 - Further protect core with Pt skin
 - Eliminate Fe from system
 - Use theory and computation (DFT, machine-learning techniques) to guide experimental synthesis
- Support nanoparticles on Fe-free, N-doped graphitic carbon
- Integrate supported nanoparticles into MEAs, test initial performance and durability
- Perform MEA diagnostics (impedance, limiting current methods) to characterize loss mechanisms and guide electrode design
- Perform initial and post-mortem characterization (ICP-MS, XRD, XAS, XRF, SEM-EDS, TEM, STEM-HAADF, STEM-EDS) to guide synthetic work and determine effect of structure and composition on performance and durability
- Scale-up and validate MEA performance (5 cm² \rightarrow 50 cm²)
- Scale-up catalyst synthesis (multi-gram batches)

Approach: Catalyst Structures

Ordered intermetallic alloy catalysts

Primary material set:

- 1. fct-FePt (face-centered tetragonal, L1₀ structure)
- 2. fct-CoPt, fct-NiPt
- 3. fct- M_1M_2 Pt (ternaries)

<u>Alternative materials (risk mitigation):</u>

- 1. $L1_2$ structures (Pt₃M)
- 2. Doping with other elements
- 3. Other intermetallics

Johnston-Peck et al., Nanoscale, 2011, 3, 4142

Background: Fully Ordered fct-FePt in RDE

- Higher degree of ordering provides higher ORR activity
- Fully-ordered fct structure and ORR activity maintained during 20,000 potential cycles
- Fe:Pt ratio change during cycling: Fully-ordered: 50:50 → 47:53 (20,000 cycles) Partially-ordered: 50:50 → 26:74 (300 cycles)

Li et al, Nano Lett. 2015, 15, 2468.

nm

Pre-project data shows fully-ordered fct-FePt structure has improved activity and durability in RDE

Approach: N-doped Carbon Supports

We are developing several classes of advanced carbon supports:

N-doped graphene tube supports

Key attributes:

- Highly graphitized improved durability
- **N-doped** improved dispersion and stabilization of nanoparticle catalysts
- Fe-free avoids Fenton degradation

Hydrogel-based nanocarbon supports

Polyaniline + metals

Approach: Testing and Characterization

MEA testing procedure:

- MEA conditioning/break-in
- Performance characterization
 - H₂ crossover
 - CV (ECSA)
 - ORR mass activity
 - H_2 /air polarization
- Durability testing (30,000 square wave cycles)

Additional MEA diagnostics:

- H₂/air impedance
- H₂/N₂ impedance (electrode protonic resistance)
- O₂ limiting current techniques (transport loss breakdown, local O₂ resistance)

Catalyst/MEA characterization:

- ICP-MS (alloy composition)
- XRD (alloy structure, before and after test)
- XRF (composition/loading)
- SEM-EDS (component thickness, interfaces, metal content in membrane)
- TEM, HAADF-STEM, STEM-EDS (particle size, structure, composition)
- XAS (chemical and structural information)

Milestones

12/16	Synthesize fully ordered fct-FePt nanoparticles from FePt-Fe ₃ O ₄ precursors and perform initial electrochemical characterization	\checkmark
3/17	Incorporate at least two distinct ordered intermetallic catalysts into MEAs and perform fuel cell testing including mass activity and high-current performance	
6/17	Perform initial durability testing (square-wave AST) on ordered intermetallic catalysts in MEA	
9/17	Demonstrate 5-7 nm fct-MPt with <40% loss in mass activity following square-wave AST	
12/17	Synthesize at least two distinct N-doped supports and compare their properties as catalyst supports	
3/18	Demonstrate Fe-free intermetallic catalyst that meets DOE mass activity target (0.44 A/mg $_{PGM}$ at 0.9 V) (GO/NO-GO)	
6/18	Synthesize 1.0 g of size controlled fct-M ₁ M ₂ Pt nanoparticles	
9/18	Develop theoretical coverage-dependent mechanisms for the most promising systems to provide further insights and continued design improvement	
12/18	Demonstrate ordered intermetallic nanoparticle catalyst meeting mass activity and 30,000 cycle AST durability targets in 5 cm ² MEA	
3/19	Demonstrate supported catalyst meeting 5,000 cycle support AST durability targets in 5 cm ² MEA	
6/19	Demonstrate ordered intermetallic nanoparticle catalyst meeting mass activity and 30,000 cycle AST durability targets in 50 cm ² MEA	
9/19	Validate MEA performance of 1 W/cm ² or greater and achievement of mass activity and durability targets in 50 cm ² MEA	

Accomplishments: ORR Intermediate Adsorption Strengths

- Strong correlation between adsorption strength of different oxygen-containing species makes it difficult to strengthen OOH while weakening O
- Initial calculations indicate that dealloyed fct-PtFe(111) surface has stronger OOH adsorption and weaker O adsorption than Pt(111) – unique fct structure breaks the adsorption strength scaling relationship, enabling faster kinetics

Accomplishments: Pt/C Baseline MEA

- TKK TEC10E20E (20%Pt/C) catalyst used as a baseline for comparison
- Nominal composition: 20% Pt
- Cathode loading: 0.122 mg_{Pt}/cm²

100/200 sccm H₂/air N212, 5 cm² 100%RH, 150 kPa_{abs} Anode 0.1 mg_{Pt}/cm²

Accomplishments: Initial fct-FePt/C MEA Testing

- fct-FePt/C, 15% metal, 0.112 mg/cm² Pt
- Mass activity below RDE results (~0.2 A/mgPt vs. ~0.7 A/mgPt), but excellent durability
- Better durability than Pt/C baseline, but worse high-current performance

100/200 sccm H₂/air N212, 5 cm² 100%RH, 150 kPa_{abs} Anode 0.1 mg_{Pt}/cm²

Accomplishments: Synchrotron fct-FePt/C Studies

N.N. Kariuki, A.J. Kropf, D.J. Myers (ANL)

- Superlattice peaks in WAXS (red arrows) show intermetallic fct structure
- Little change in ordering peaks after 30K cycle AST – **fct structure is durable**

Preliminary Pt L3 EXAFS data indicates similar bond length before and after AST

Wavenumber (Å-1)

of 9 nm does not change during AST

Accomplishments: fct-CoPt Initial Synthesis

Annual Merit Review

BROWN

Accomplishments: N-doped Graphene Tube Supports

20wt% Pt/N-GT(Ni) Iron-free carbon supports

- Mixing and pyrolysis of inexpensive precursors generates Fe-free N-doped graphene tube support (N-GT)
- Pt/N-GT showed no loss after 20,000 cycles during 1.0 to 1.5 V potential cycling in N₂ sat. 0.5 M H₂SO₄ (MEA testing now underway)
- Further optimization of support synthesis and Pt deposition is ongoing

Accomplishments: Co and Ni ZIF-based Supports

D.A. Cullen, K.L. More (ORNL)

- Supports based on pyrolyzed Co and Ni ZIF precursors were prepared. Supports exhibit graphitic character, with residual Co and Ni atoms dispersed throughout.
- STEM-EELS spectra acquired with beam on a Co or Ni atom show presence of N, while spectra acquired in metal-free areas show no N, indicating that N is co-located with transition metal (Co, Ni).
- Next step: low-loaded platinum on ZIF-based supports will be examined to study co-location of Pt with N.

Response to Previous Year Reviewer Comments

This project was not reviewed last year.

Collaborations: Team Member Roles

LANL

- Coordinate project
- Synthesize catalysts
- Produce and test MEAs

Brown

- Synthesize and characterize catalysts; supply to partners
- Provide theory-based design principles

No-cost partners:

- **Pajarito Powders** (catalyst scale-up)
- **3M** (SOA low EW membranes and ionomers)

Penn

• Synthesize and characterize catalysts; supply to partners

Buffalo

• Synthesize and characterize supports; supply to partners

EWII

- Scale up MEA production
- Catalyst/MEA validation

Other collaborators:

- ANL (Synchrotron X-Ray studies)
- ORNL (HRTEM, STEM)

Remaining Challenges and Barriers

- Produce fct-CoPt and fct-NiPt with similar degree of ordering to current fct-FePt
- Decrease fct-MPt particle size from current levels (8-10 nm) to 3-7 nm while maintaining degree of ordering
- Scale up synthesis to multi-gram batches using cost-effective chemistry
- Incorporate N-doped graphitized supports into high-performance electrodes
- Demonstrate simultaneous achievement of high activity (mass activity > 0.44 A/mg_{PGM}) and high durability (satisfying catalyst and support ASTs)
- Develop optimized electrode structures with effective transport properties to enable >1 W/cm² operation

Future Work

FY17:

- Perform initial synthesis of Fe-free fct-PtM/C and fct-PtM₁M₂/C catalysts
- Test Fe-free catalysts in RDE (initial screening) and MEA and compare to fct-FePt/C and baseline Pt/C, including 30,000 cycle AST
- Deposit fct-MPt catalysts on N-doped graphitized supports and compare with baseline Pt/C and fct-MPt/C
- Scale up successful synthetic chemistries to gram scale
- Begin MEA scale-up and validation
- Perform computational studies to guide synthetic work and interpret experimental findings

FY18:

- Key milestone: demonstrate 0.44 A/mg mass activity at 0.9 V in MEA during FY18Q2. If mass activity target cannot be met with fct-intermetallics, switch to other PtM intermetallic formulations (such as Pt₃M)
- Continue catalyst and support development using feedback from MEA testing and characterization

Any proposed future work is subject to change based on funding levels

Tech Transfer Activities

• Engaged a US catalyst supplier (Pajarito Powder) to discuss possible licensing and scale-up activities

Summary

Objective:Design active and durable ORR catalysts based on fully-ordered intermetallic alloys on
highly graphitized nitrogen-doped carbon supports, and demonstrate in high-
performance, durable MEAs.

Relevance:

Project directly addresses cost, durability, and performance through key DOE targets:

- MEA mass activity > 0.44 A/mg_{PGM} @ 0.9 ViR-free
- <40% MEA mass activity loss after catalyst and support ASTs
- <30 mV loss at 0.8 A/cm² and 1.5 A/cm² after catalyst and support ASTs
- PGM total loading < 0.125 mg/cm²
- Power density > 1 W/cm²
- Approach:Fully-ordered intermetallic Pt alloy catalysts supported on highly-graphitized N-doped
carbon supports are being developed and tested in MEAs. Synthetic work is guided by
computational ORR kinetic studies. Feedback from MEA testing and from
characterization studies guides each round of synthetic development.
- Accomplishments: Project has just begun, but fct-FePt/C catalysts have already demonstrated promising durability. New N-doped graphitized supports also show promising durability.
- **Collaborations:** Strong team consists of a national lab with extensive catalyst synthesis, MEA testing, and characterization capabilities, three universities with excellent synthetic and computational capabilities, and an industrial partner with experience in MEA validation and scale-up. No-cost partners and external collaborators provide additional industrial perspective, materials, and characterization techniques.

Technical Backup Slides

Preparation of Fully Ordered fct-FePt

Preparation procedure:

- Thermal decomposition of metal precursors to FePt-Fe₃O₄ nanoparticles
- 2. Formation of protective MgO coating
- Annealing (700°C, 6 h) to produce fully-ordered fct structure
- Removal of MgO and deposition on carbon support

MgO protection enables annealing to fully-ordered fct structure without particle growth

BROWN

Preparation of Structured Particles

- Seed-mediated growth can produce monodisperse particles with thin Pt shell on non-Pt core
- Technique will be used to prepare monodisperse fct-PtM, fct-PtM₁M₂, and fct-alloy core/Pt shell particles

Theory-based Design Principles

Associative mechanism

 $O_{2} + (H^{+} + e^{-}) + * \rightarrow *OOH$ *OOH + (H^{+} + e^{-}) → *O + H_{2}O_{(I)} *O + (H^{+} + e^{-}) → *OH *OH + (H^{+} + e^{-}) → * + H_{2}O_{(I)}

Dissociative mechanism

 $O_2 + 2^* \rightarrow 20^*$

 $2 \text{ O}^* + 2 (\text{H}^+ + \text{e}^-) \rightarrow 2 \text{ *OH}$

2 *OH + 2 (H⁺ + e⁻) \rightarrow 2 * +2 H₂O₍₁₎

- Non-optimal adsorption strength for reaction intermediates leads to sluggish ORR kinetics on Pt
- 500 mV overpotential required before all steps become spontaneous

New Hydrogel-based N-doped C Synthesis Method

- Able to tune material properties by controlling synthetic chemistry:
 - Surface area
 - Particle size
 - Graphitization degree
 - Porosity
 - Dopant
- No additional carbon support required

Mn-Based Carbon from Hydrogel Method

- Hydrogel method can produce ORR active Mnderived carbon
- Activity approaches state of the art PGM-free catalysts (i.e. Fe-N-C)
- Initial samples have low stability in 1.0-1.5 V AST; optimization is ongoing

0 2

04

Potential (V vs. RHE)

0.6

