

Mesoporous Non-Carbon Catalyst Supports for PEMFC

PI: Jacob Coppage-Gross CertainTech Inc. 06/05/2017 Project ID: FC165

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Certain **Tech**

Timeline and Budget

- Project Start Date: Feb 21, 2017
- Project End Date: Nov 21, 2017
- Total Project Budget: \$ 138K

DoE Goals for Catalysts/Electrodes:

- Develop electrocatalysts and electrodes with reduced PGM loading, increased activity, improved durability / stability, and increased tolerance to air, fuel, and system-derived impurities
- Optimize electrode design and assembly

Barriers

- Degradation of carbon catalyst support
- Activity of platinum catalyst on support materials

Partners

- Dr. Sirivatch Shimpalee (Hydrogen and Fuel-Cell Center, University of South Carolina)
- Dr. Kris Rangan (Materials Modification Inc.)

Overview

DOE Performance Goals:

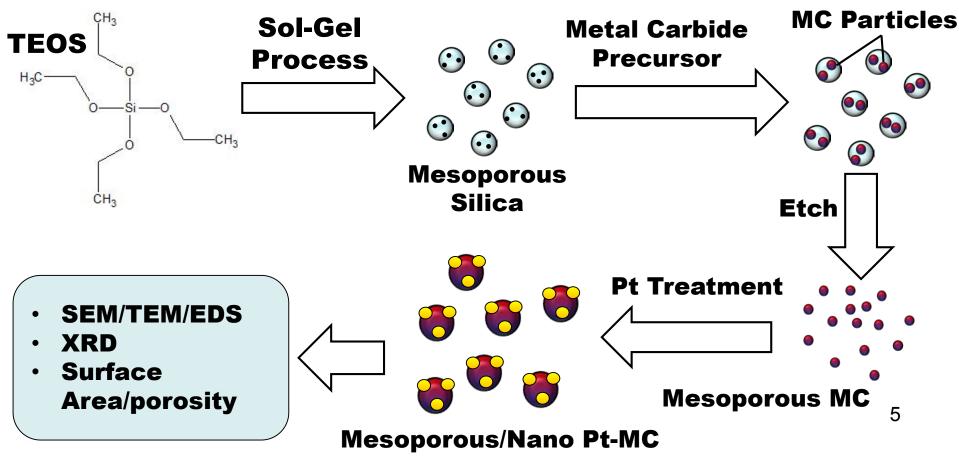
Characteristic	Unit	2015 Status	2020 Target
Platinum group metal total content	g / kW @ 150kPA	0.16	0.125
Platinum group metal loading	mg PGM / cm ²	0.13	0.125
Mass activity	A / mg PGM @ 900 mV	>0.5	0.44
Loss in initial catalytic activity	% mass activity loss	66	<40
Loss in performance at 0.8 A / cm ²	mV	13	<30
Electrocatalyst support stability	% mass activity loss	41	<40
Loss in performance at 1.5 A / cm ²	mV	65	<30
PGM-free catalyst activity	A / cm² @ 900mV	0.024	<0.044

"Multi-Year Research, Development, and Demonstration Plan," Department of Energy, Office of Energy Efficiency & Renewable Energy, 2016

Relevance

- Improve durability and cost efficiency of fuel cell performance through mesoporous platinum-metal carbide (Pt-MC) catalystsupport material
- Benefits of Pt-MC over traditional carbon based catalyst supports:
 - Improved resistance to corrosion (from impurities, fuel mixture changes, water, etc.)
 - Lower platinum loading with unique mesoporous nanostructured support

• Approach:


- **1. Pt-MC** nanocomposite synthesis and characterization
- 2. Demonstration of electrochemical performance of MEA incorporating Pt-MC

Approach

1. Pt-MC nanocomposite synthesis and characterization

- Produce high surface area Pt-MC mesoporous powders through nanocasting method
- Determine morphology of Pt-MC material

Approach

2. Demonstration of electrochemical performance of MEA incorporating Pt-MC

- Electrochemical evaluation of catalyst-support material
- Performance assessment of prototype MEA incorporating the catalyst-support

Rotating Disk Electrode Test

- Electrochemically active surface area (ECA), 100-200 cycles
- Oxygen reduction activity (ORR)

Optimization of Catalyst-Support

- MC particle size/shape
- Pt loading level
- Process Parameters

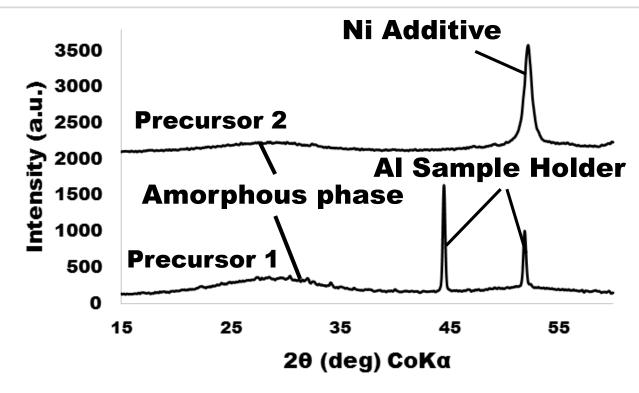
MEA Testing

- Polarization Curves
- Cyclic Voltametry
- Comparison with SOA Pt/C catalysts

MEA Construction (up to 25cm² cell size)

- Nafion 212 membrane
- Carbon Paper GDL
- Pt-MC Catalyst

Milestones

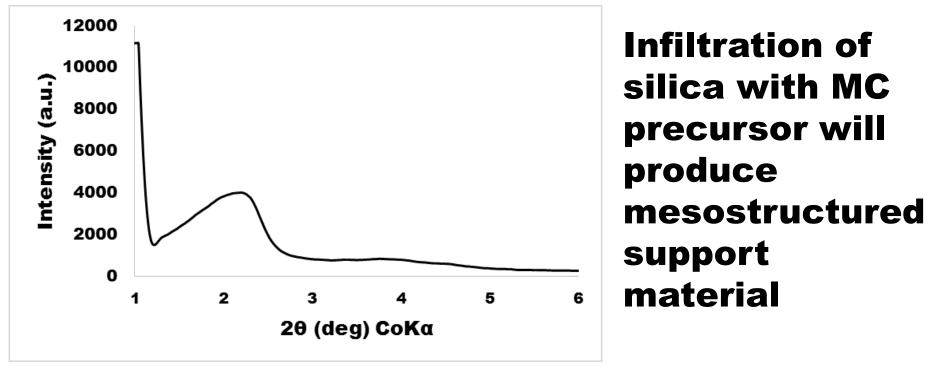


Milestone	Metrics Evaluated	Date
 Preparation of mesoporous Pt-MC Synthesis of metal carbide precursor ✓ Synthesis of mesoporous template√ Pyrolysis to mesoporous MC Platinum functionalization SEM Analysis 	Pt Content Porosity Surface Area	5/17
 2. RDE Testing 100-200 cycle testing Comparison with traditional carbon support 	ORR ECA	7/17
 3. MEA Fabrication and Testing Assembly of MEA integrating Pt-MC catalyst Testing of Pt-MC-MEA and comparison with state-of-art MEA 	Mass Activity Performance Stability	10/17

Accomplishments and Progress

Synthesis of MC precursor:

 Pyrolysis (600°C) of metal-polymer compound prepared by reaction of metallic species with polyvinyl alcohol (PVA)

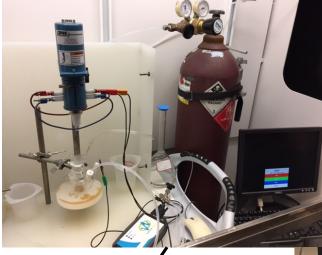


Precursor 2 shows no oxide impurities and should yield highly pure metal carbide

Certain **Tech**

Accomplishments and Progress

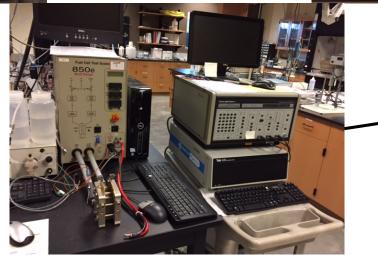
Mesoporous Silica Template:



*Project not reviewed previously

Certain **Tech**

Collaboration


- Certain **Tech**
- Dr. Sirivatch Shimpalee (University of South Carolina)
 - Technical Consultant for MEA construction and testing

MEA Construction

Rotating Disk Electrode (RDE) Testing

MEA Testing: Performance and Cyclic Voltammetry

Collaboration

- Dr. Kris Rangan (Materials Modification Inc.)
 - Technical Consultant for materials design and fabrication
 - Expert in nanomaterials, synthesis, and characterization
- University of Maryland Nanocenter (POC Dr. Sz-Chian Liou)

COULTER™ SA 3100™ Particle Size Analyzer (MMI)

Hitachi SU-70 FEG SEM (UMD)

11

Certain **Tech**

http://www.hitachi-hightech.com/us/product_detail/?pn=em-su70

Remaining Challenges and Barriers

- Confirmation of catalyst performance using a Pt-MC material
- Synthesis of Pt-MC using low temperature processes
- Identification of low-cost precursors that can be fabricated with the required mesoporous structure to ensure optimal catalyst performance
- Long term stability of the metal carbide support

Certain **Tech**

Proposed Future Work

Phase I Goals (FY2017)

 Demonstrate minimal loss in Electrocatalytic activity in Pt-MC catalyst and MEA

*Certain***Tech**

- Reduce required loading level of platinum
- Evaluate alternate precursor materials to determine feasibility of producing mesostructured support material
- Phase II Work (FY2018)
- Optimization of process parameters for fabrication of Pt-MC and scale up method
- High Cycle Durability testing of Pt-MC catalyst (up to 30,000 cycles)
- Prototype fuel cell fabrication up to 50cm²/short stack

"Any proposed future work is subject to change based on funding levels." 13

Summary

- Metal carbides have attractive properties that make them good candidates for catalyst support materials in fuel cells
- This research effort is focused on preparing low-cost mesoporous metal carbide materials that are suitable for catalyst support applications
- Performance Targets:

Characteristic	Unit	2015 Status	2020 Target
Loss in initial catalytic activity	% mass activity loss	66	<40
Loss in performance at 0.8 A / cm ²	mV	13	<30
Electrocatalyst support stability	% mass activity loss	41	<40
Loss in performance at 1.5 A / cm ²	mV	65	<30