

Highly Robust Low-PGM MEAs Based upon Composite Supports

PI: Arrelaine Dameron Forge Nano University of Connecticut June 5, 2017

Project ID# FC168

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 2/21/2017
- Project End Date: 11/20/2017

Budget

• FY17/Total Budget: \$155,000

Barriers

- High voltage & high cycle carbon durability without significant performance impacts
- Economical scalability of thin film solution

Partners

Ugur Pasaogullari Research Group
Center for Clean Energy Engineering,
University of Connecticut

Relevance

Specific Technical Objectives:

- Demonstrate a successful overcoat method on commercial low PGM Pt/C catalysts, specifically targeting uniform coverage of the carbon support with gas phase access to the Pt catalysts.
- Evaluate the activity, ohmic resistance and cycling stability of overcoated catalyst materials by rotating disk electrode (RDE) and membrane electrode assembly (MEA) testing.
- Demonstrate improved cycling durability with MEA testing of optimized encapsulated catalysts without significant loss in activity.
- Down select to a viable encapsulated Pt/C catalyst material based on performance, process scalability and techno-economic considerations.

Impact:

• Achieve the 2020 targets for cost (\$40/kW at the system level, \$14/kW at the MEA level), startup/shutdown durability (5,000 cycles), and less than 10% loss in power after 5,000 hours.

- Al(CH₃)₂(s) H₂O (g) Al₂O₃(s) Purge Pulse Purge
 - Repeat ALD cycle N times

Pulse

- Gas phase process
- Self limiting
- No line-of-sight restrictions
- Sub-nanometer control
- Pinhole free

Approach: ALD for Better Durability

 $\mathsf{Pd}:\mathsf{Al}_2\mathsf{O}_3$ catalysts with 0-20 $\mathsf{Al}_2\mathsf{O}_3$ ALD overcoating cycles. [Lu et al., Surf Sci Reports 71 (2016) 410-472]

 Al_2O_3 ALD overcoating on ALD-derived Pt nanoparticles, showing effective elimination of sintering/ripening at high temperatures. [Liang et al. ACS Catalysis, 1, (2011) 1162-1165]

We use ALD techniques to apply thin conductive coatings to the carbon surfaces to passivate them against electrochemical corrosion and to stabilize the electrochemically active structures.

Approach: Challenges

Engineering Selectivity:

[adapted from Chung et al., J. Energy Chem. 25 (2016) 258-264].

Overcoming Intrinsic Surface Effects:

[Sun et al. Journal of Physical Chemistry C, 117, 22497, 2013]

Approach: Scaling

Forge Nano's lean manufacturing strategy significantly reduces labor and capital costs & minimizes waste

Conventional Batch System

Approach: Optimization

- **Goals** Process Parameters for quality coatings
 - Precursors (Halides, Metal alkyl, Aqueous oxidizers, Oxygen allotropes)
 - Diffusion Times
 - Purge Times
 - Pressure
 - Thickness (ALD Cycles)
 - Conductivity (ALD Doping and Concentrations)
 - Nucleation (Carbon pretreatment & Pt blocking)
 - Porosity of Coating (Annealing & Crystallinity)
 - Atomic Contaminants (Halides)

Approach: Optimization Measurements

- Catalyst electrochemical surface area (ECSA)
- Catalyst activity (mass and specific)
- Coating resistivity (electrochemical capacitance)
- Coating stability (over whole potential range of 0.6 to 1.0 V)
- Polarization curves
- Potential cycling (start/stop 1.0 < *E* < 1.5 V versus RHE)
- Potential holds (1.2V vs RHE)
- Scaled measurements (MEA testing) (DOE 2011 Support Testing protocols)

Progress: Sample Set 1

Sample Set 1 Target: Process conditions; appropriate scale for thickness; annealing impacts

											Static		
		ALD		Precursor	Precursor	Precursor	Precursor		Ох	Ox	or	Process	[M]
ID	Date	cycles	mass (g)	Temp	ΔΡ	Time	Purge	Οχ ΔΡ	Time	Purge	Flow	Notes	(ppm)
FN0009.1-1	3/28/2017	3	2.5	40	9.7	2	10	7.1	2	10	flow		18603
FN0009.2-1	3/28/2017	3	2.5	40	8.8	2	10	8	2	10	flow	Ox predose	14732
FN0009.3-1	3/30/2017	50	5	40	9.5	2	10	7.9	2	10	flow		20648
FN0009.4-1	3/30/2017	50	split from 3.1	-	-	_	-	_	-	_	-	300C anneal 9.3	19078
FN0009.11-	3/31/2017	3	2.5	75	60	30s/10min	5-20-5	100	2min/ 10min	5-20-5	static		19938
FN0009.5-1	4/5/2017	50	5	50	20	35s/2min	2-8-2	35	30s	2-8-2	static		24388
FN0009.6-1	4/5/2017	50	split from 3.1	-	-	-		-	-	_	-	300C anneal 9.5	13865
FN0009.7	4/6/2017	27	5	50	13	35s/2min	2-8-2	40	30s	2-8-2	static		8416
FN0009.8	4/10/2017	27	split from 9.7	-	-	-	-	-	_	-	-	300C anneal 9.7	9591
FN0009.9	4/10/2017	9	2.5	50	20	15s/1min	1-4-1	35	15s	1-4-1	static		12331
FN0009.10	4/11/2017	9	2.5	75	56	30s/10min	8-30-5	100	2min/ 10min	5-20-5	static		12182

Progress: Sample Set 1

Sample Set 1 Target: Process conditions; appropriate scale for thickness; annealing impacts

Progress Future Targets

- Sample Set 1 Target: Appropriate scale for thickness; annealing impacts
- Sample Set 2 Target: Explore alternative precursors and doping/conductivity
- Sample Set 3 Target: Optimize thickness and process conditions based on RDE measurements for Set 1 and Set 2
- Sample Set 4 Target: Optimized film conductivity and porosity with postprocessing annealing
- Sample Set 5 Target: Reproducibility

Collaboration: Measurements Support

- Ugur Pasaogullari Research Group
 - Center for Clean Energy Engineering @ University of Connecticut
 - Subcontract
 - Electrochemical Characterization
- Pasaogullari Group is primarily providing RDE characterization of the coated electrode materials to understand and validate the effects of the coatings/processes.
- Secondarily, they will do MEA testing of selected/optimized materials to establish baseline and to help with final down selection of coatings/processes for Phase II.

Schedule: On Track

		Qtr 2, 2017				Qtr 3, 2017					Qtr 4, 2017		
Task Name 👻	Duration 👻	Feb	Mar	Apr	May	Jun	Jul	Aug	Se	р	Oct		
Task 1: Project Management and Customer Development	9 mons	-										РСТ	
Task 2: ALD Pt/C commercial catalysts	5 2.5 mons	-			РСТ								
Task 3: RDE Evaluation of initial ALD on Pt/C	3.5 mons			_		UConn							
Task 4: Optimization of ALD on Pt/C powders	3 mons				-		_PC	ŗ					
Task 5: Evaluation of Optimized Materials	2 mons						UConn						
Task 6: Evaluation of Materials by MEA Durability Cycling	4.5 mons									UCor	in		
Task 7: (If required): ALD layers for enhanced conductivity	1 mon								РСТ				
Task 8: Economic Assessment	2 wks									PCT			
Task 9: Final down-selection for Phase II readiness	2 wks									*	PCT & UC	Conn	
Phase I Report and Phase II Proposal	3 wks										*	РСТ	

Proposed Phase I/II Targets

- Technoeconomic feasibility study for optimized ALD process and post processing conditions
- Scaled demonstration and development of scaled equipment for temperatures and pressures required. Include post processing.
- Expanded lifetime testing on scaled optimized catalysts

- Developing strategies to stabilize the electroactive catalyst and the carbon support with ALD thin films
- Coating optimization includes ALD film growth process, film conductivity, film porosity and post process annealing
- Measurements target carbon corrosion during start stop conditions as well as performance metrics (ESCA, activities) at RDE and MEA scale
- This work is a collaboration between Forge Nano and Pasaogullari Research Group at University of Connecticut