

Manufacturing Competitiveness Analysis for Hydrogen Refueling Stations

Department of Energy Annual Merit Review for Fuel Cell Research *June 06, 2017* || *Washington, D.C.*

Ahmad Mayyas (Co-P.I.), Margaret Mann (P.I.)

Project ID # MN017

National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

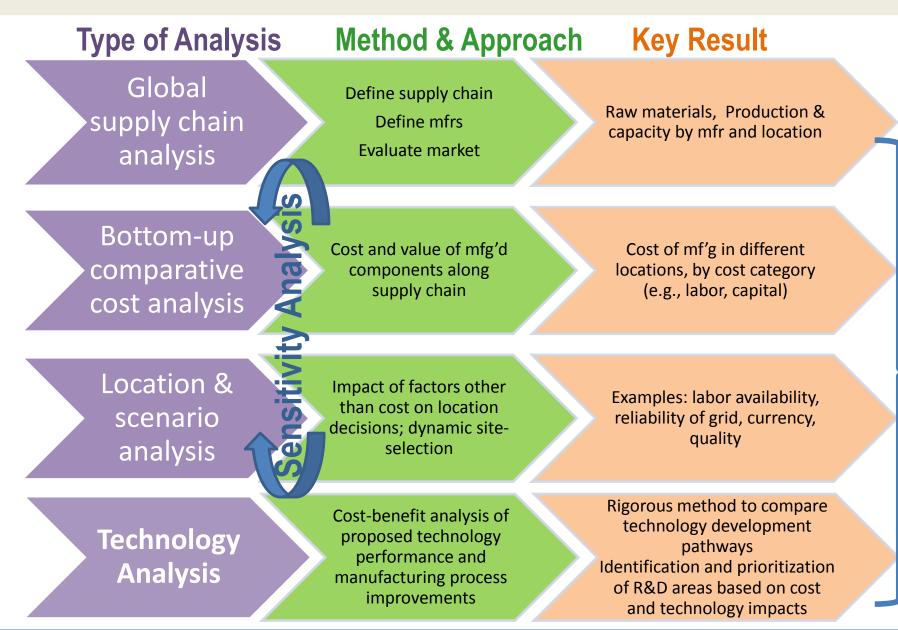
Overview

Timeline

- Project start date: April 2015
- Project end date: March 2018
- Percent complete: 75%

Budget

- Total project funding
 - DOE share: \$719 K
 - Contractor share: n.a.
- Funding received in FY16: \$519 K
- Planned Funding for FY17: \$0


Technical Barriers

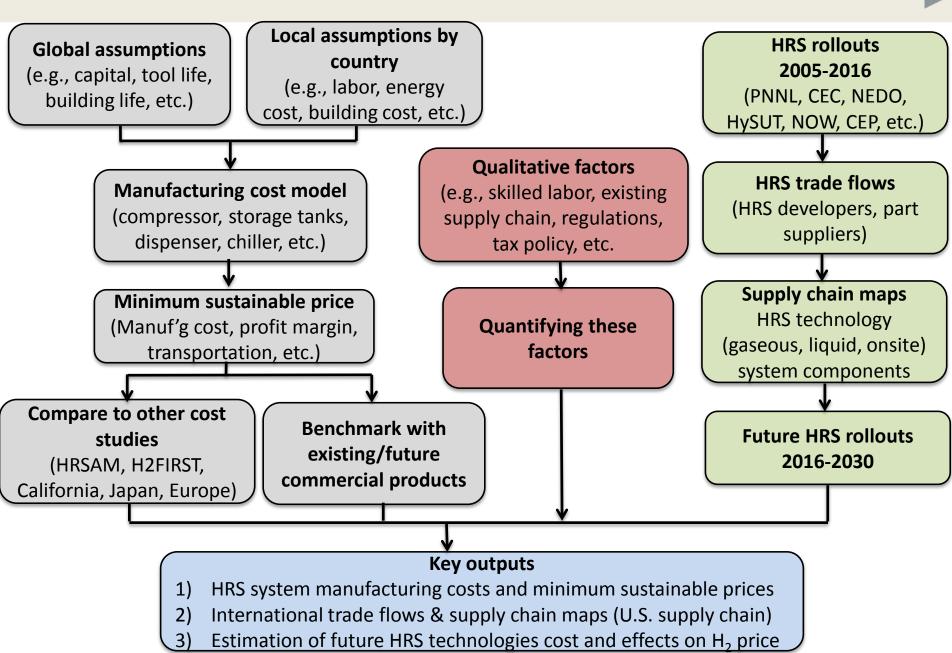
- A: Lack of hydrogen/carrier and infrastructure options analysis
- B: Reliability and costs of gaseous hydrogen compression
- E: Gaseous Hydrogen Storage and Tube Trailer Delivery Costs

Collaborators

- Argonne National Laboratory
- Sandia National Laboratories
- Pacific Northwest National Laboratory
- Other Industry Advisors and Experts

CEMAC Methodology & Key Results

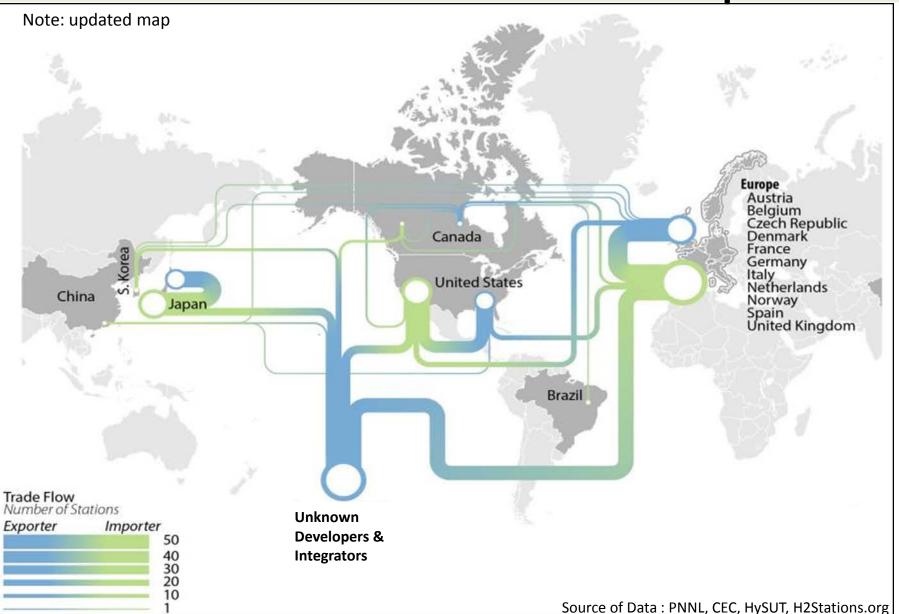
Technology

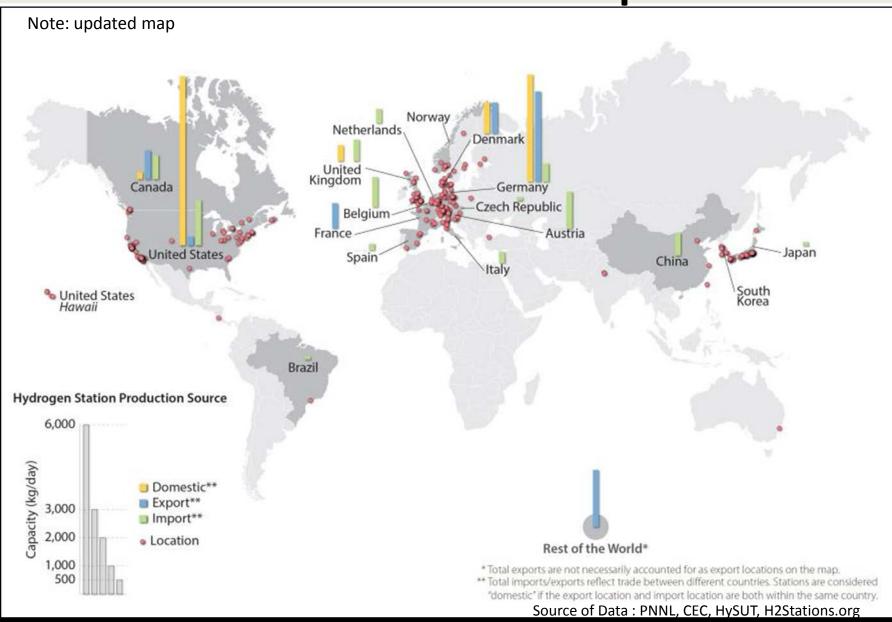

Roadmaps

Manufacturing

Relevance & Goals

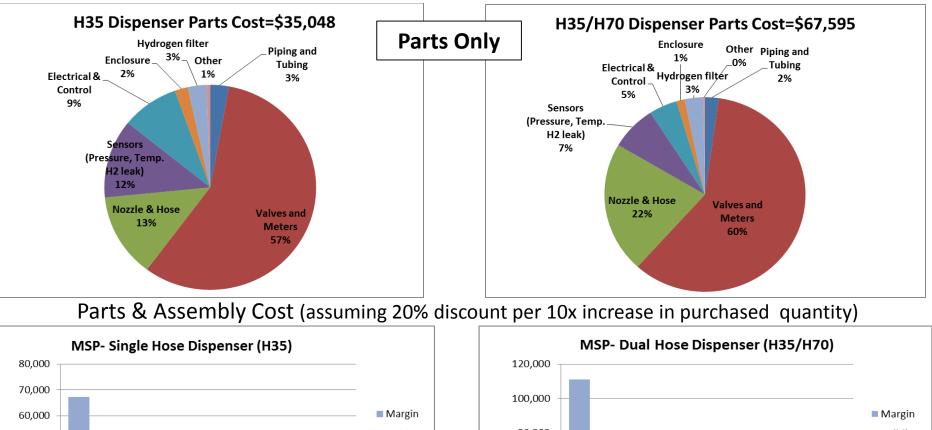
- Provide a platform for manufacturing cost analysis for major hydrogen refueling station (HRS) systems
 - Identify cost drivers of hydrogen compressor (40-60% of total HRS capital cost)
 - Identify cost drivers of various storage tank technologies and configurations
 - Investigate effect of learning experience and availability of part suppliers on the chiller, heat exchanger and dispenser costs
- Work with FCTO to establish manufacturing cost models for HRSs
 - Establish a manufacturing cost framework to study cost of HRS systems (compressor, storage tanks, chiller & heat exchanger, and dispenser)
 - Highlight potential cost reductions in manufacturing phase for future R&D projects

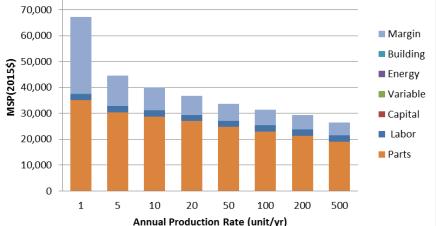

Approach

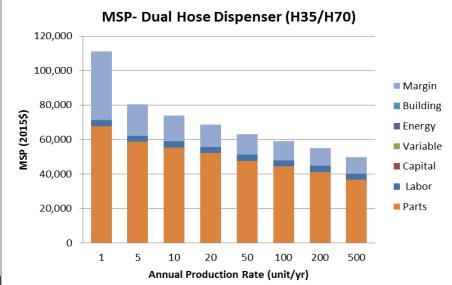

Accomplishment and Progress International Manufacturers

Accomplishment and Progress HRS International Trade Flows Map

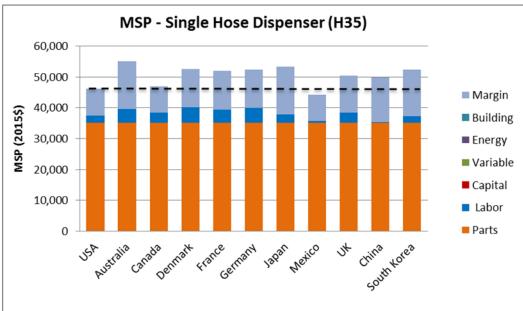
Accomplishment and Progress HRS Trade Flows Map

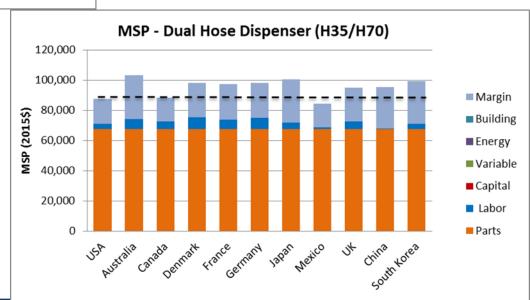

CEMAC – Clean Energy Manufacturing Analysis Center

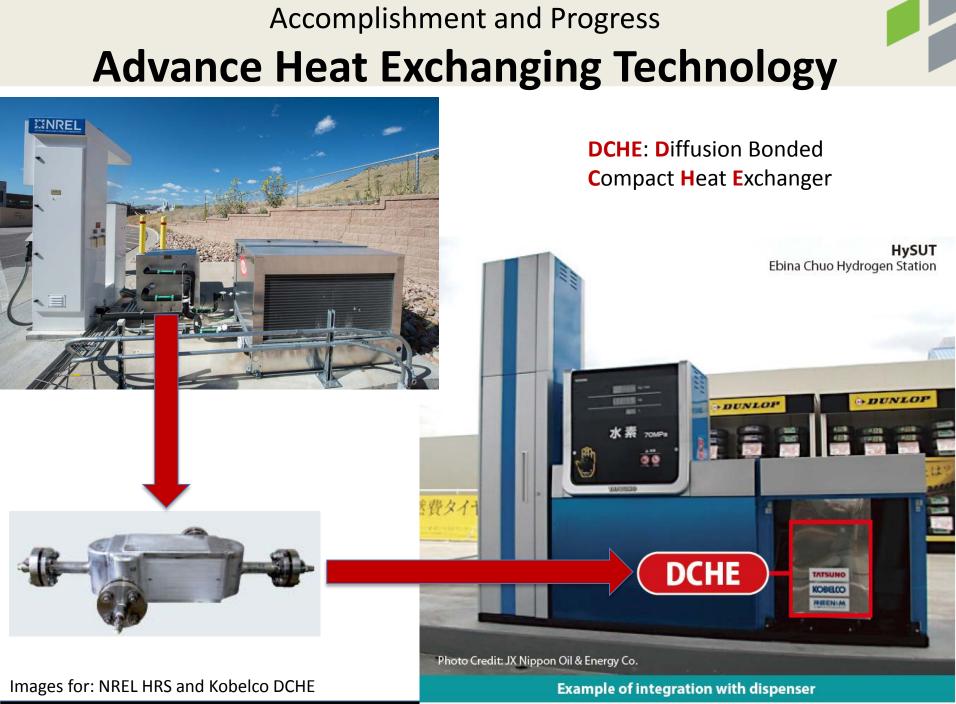

Dispenser Cost Analysis


Single Hose Dispenser H35						
			Required	Dispenser		
Part No.	Part	Supplier 1	Units	(\$)		
1	SOLENOID VALVE	Omega	1	715		
2	Flow Meter	Alicate	1	10000		
3	Pressure checking/Regulating Valves	Tescom	1	4771		
4	Pressure Relief Valve	High Pressure Equipment Company	1	658		
5	Breakaway valve	Oasis	1	3953		
6	Hydrogen Leak Sensor	SBS	1	695		
7	IR flame detector		2	3000		
8	Pressure sensors	Sensor Solutions	2	600		
9	Temperature sensors	TempSensing	1	50		
10	Hydrogen filter		1	1000		
11	Piping (10 m required)	Zoro	10	250		
12	Tubing and Fittings (10 units estimated)	Swagelok	15	750		
13	Air Actuated valve	Valworx	1	160		
14	Control Unit	Siemens	1	1000		
15	Hose (single/double)	NanoSonic	1	100		
16	Nozzle	OPW	1	4531		
17	Nozzle Boot		1	200		
18	Power Supply	iGem	1	275		
19	Digital Display	Wayne	1	347		
20	Card Reader	Ovation	1	149		
21	Console/keypad	Wayne	1	580		
22	Console printer	Wayne	1	385		
23	Fueses (3A; 5A; 10A)	Mersen	3	60		
24	Relays (3A; 5A; 10A)	Releco	3	75		
25	k-type thermocouples	Autocalve	2	204		
26	Enclosure	n/a	1	500		
27	Shut-down emergency Button	VanTech	1	40		
	Total			35,048		

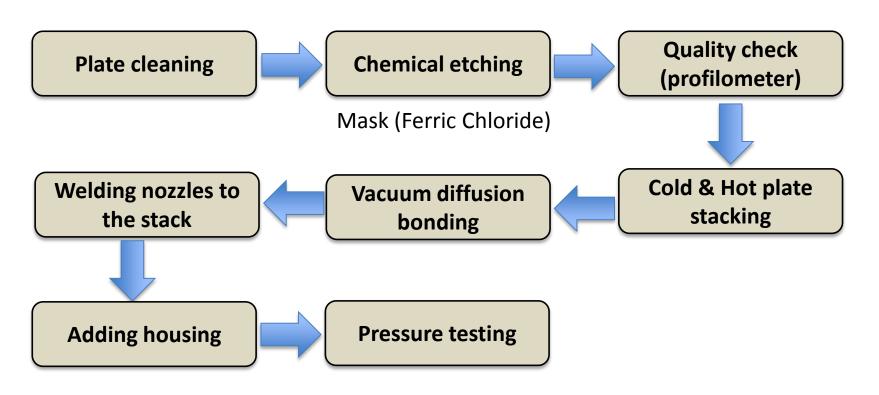
Dual Hose Dispenser H35/H70					
	Requ			Cost per	
Part No.	Part	Supplier 1	Units	Dispenser (\$)	
1	SOLENOID VALVE	Omega	2	1430	
2	Flow Meter	Alicate	2	20000	
3	Pressure checking/Regulating Valves	Tescom	2	9542	
4	Pressure Relief Valve	High Pressure Equipment	2	1316	
5	Breakaway valve	Oasis	2	7906	
6	Hydrogen Leak Sensor	SBS	1	695	
7	IR flame detector		2	3000	
8	Pressure sensors	Sensor Solutions	4	1200	
9	Temperature sensors	TempSensing	2	100	
10	Hydrogen filter		2	2000	
11	Piping (20 m required)	Zoro	20	500	
12	Tubing and Fittings (20 units estimated)	Swagelok	20	1000	
13	Air Actuated valve	Valworx	1	160	
14	Control Unit	Siemens	1	1000	
15	Hose (single/double)	NanoSonic	2	200	
16	Nozzle	OPW	2	14531	
17	Nozzle Boot		2	400	
18	Power Supply	iGem	1	275	
19	Digital Display	Wayne	1	347	
20	Card Reader	Ovation	1	149	
21	Console/keypad	Wayne	1	580	
22	Console printer	Wayne	1	385	
23	Fueses (3A; 5A; 10A)	Mersen	3	60	
24	Relays (3A; 5A; 10A)	Releco	3	75	
25	k-type thermocouples	Autocalve	2	204	
26	Enclosure	n/a	1	500	
27	Shut-down emergency Button	VanTech	1	40	
	Total			67,595	

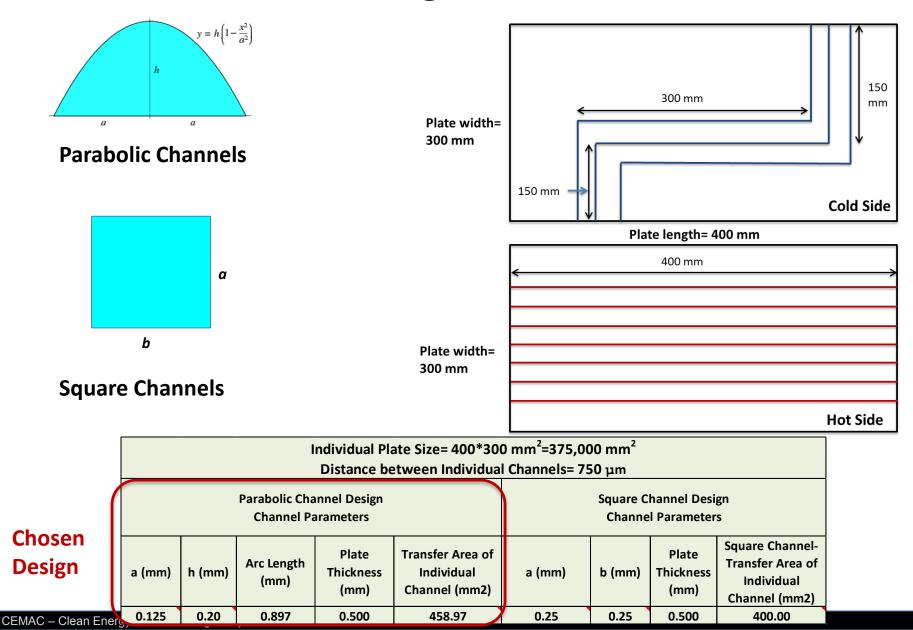

Dispenser Cost Analysis



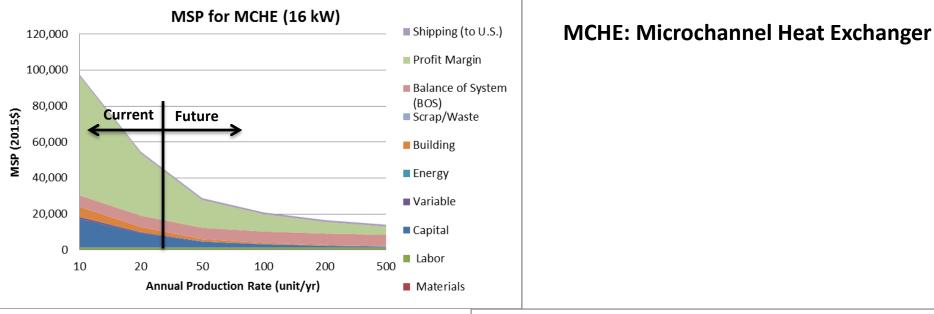


Minimum Sustainable Price - Dispenser

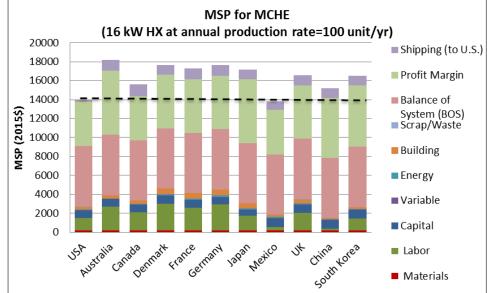

- United States advantages are: lower shipping and interest rates and longer experience in this field
- Mexico's advantage relative to the U.S. is driven by lower labor and building costs


CEMAC – Clean Energy Manufacturing Analysis Center

Accomplishment and Progress Microchannel Heat Exchanger - Process Flow


- Chemical etching can be replaced by laser grooving.
- Laser grooving speed= 300 mm/min

Accomplishment and Progress Plate Design Parameters

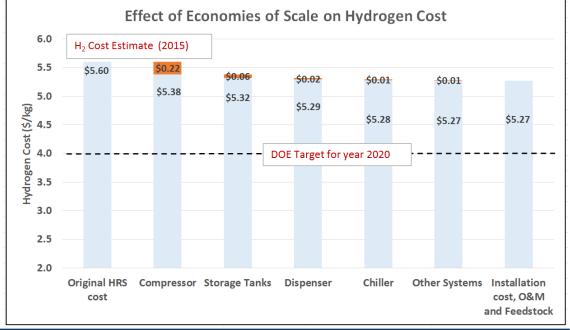


14

Accomplishment and Progress Minimum Sustainable Price - MCHE

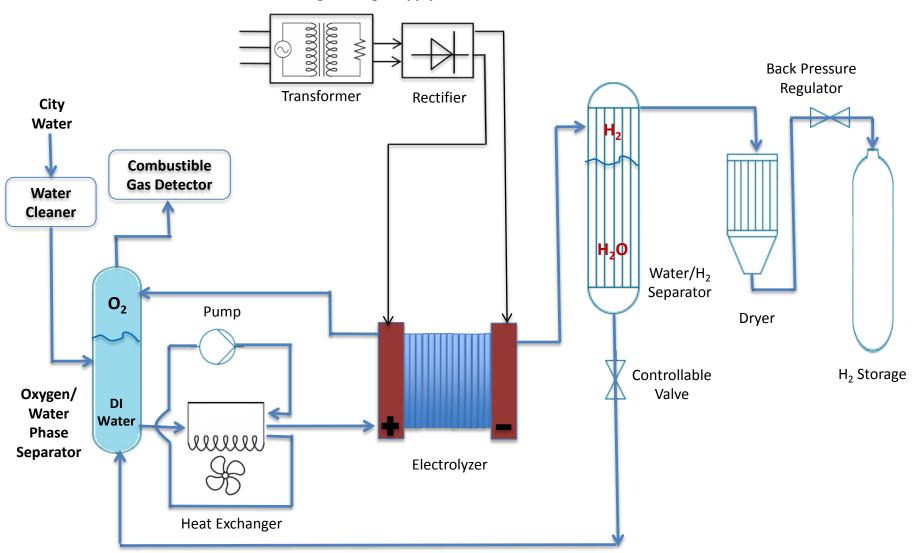
- United States advantages are lower shipping and interest rates and longer experience in this field
- Mexico's advantage relative to the U.S. is driven by lower labor and building costs
- China's advantage relative to the U.S. is driven by lower labor, low material cost, building and energy costs

HRS Capital Cost and H₂ Price


	Actual Cost (X\$1,000)	Future Cost (X\$1,000) @ 10 units/yr	Future Cost (X\$1,000) @ 100 units/yr
Capital Cost			
FirstElement HRS in California	2,050		
Installation cost, O&M and			
Feedstock	n/a	n/a	n/a
Compressor	121	55	45
Storage Tanks	166	117	56
Dispenser	270	75	55
Chiller	150	100	80
Other Systems	900	450	400
Installation cost	408	408	408
Future HRS Installed Cost	2,015	1,205	1,044

1 kg $H_2 \approx 1$ gallon of gasoline equivalent (gge)

	Fuel Cell				2016 Toyota Mirai		
	Fuel Economy and Related Estimates						
Fuel Economy (mi/kg) 🕄	50 comb	49 city	51 hwy	66 comb	66 city	66 hwy	
Range (miles)		265			312		
Annual Fuel Cost *		\$1,700			\$1,250		


Ways of reducing hydrogen cost

- Economies of scale for HRS systems can reduce hydrogen cost more than 5-10% (~20 of CSD cost)
- Standardization can do similar thing (e.g., compressors, chillers, heat exchangers, etc.)
- Installing liquid hydrogen station.
 Depends on number of FCEV and utilizations of HRS



Accomplishment and Progress Schematic of PEM Electrolysis System

High Voltage Supply

PEM Electrolyzer Stack Cost – Preliminary

CEMAC - Clean Energy Manufacturing Analysis Center

Remaining Challenges and Barriers

Challenges we face in this study:

- Involve more organizations (industry, part suppliers, regulation agencies, etc.) in the hydrogen refueling station study
- Establish new collaboration with industry for the ongoing project (manufacturing competiveness of the onsite hydrogen production equipment)
- Lack of competition between part suppliers (e.g. nozzles and hoses) make it hard to study potential cost reductions

Proposed Future Work

- Complete manufacturing cost analysis for other HRS's systems (e.g., onsite hydrogen production systems)
 - PEM electrolyzers
 - Alkaline electrolyzers
 - Small size steam methane reformers
- Study effect of future technologies and economies of scale on the HRS capital cost and hydrogen prices

Responses to 2016 AMR Reviewer Comments

- NREL should discuss how the researchers will transfer this information to industry.
- The project should reach out to existing manufacturers and developers to review the results and the assumptions that drive the models.
- In addition to the continuous work we do with industry, we got the chance to work with California Energy Commission (CEC) and ZEV office at the California Governor's office.
- The project should bring in companies that are innovating away from the traditional and mature systems and components—technology readiness levels 6 and 7.

Our team is trying hard to collaborate with researchers and manufacturers in such area, for example we recently started to work with some manufacturers of new microchannel heat exchanger technology that has been proven to reduce the cost at the long run and have better heat exchanging capabilities than classical double tube heat exchangers

• It would have been interesting if some effort was spent on durability and operating expenditures (OPEX).

While this project focuses on manufacturing cost and supply chain analyses, we agree that OPEX is important area that needs further investigation. We will work with FCTO to propose some ideas of optimizing manufacturing and operation cost of some technologies used in the hydrogen stations.

• It is not clear whether the models are used only for helping DOE assess status. Impact could be larger if these models are shared and used by the developers.

We already established sort of collaboration with industry and hope to expand this network. We will also work with FCTO and CEC to publicize our findings and insights. We are also planning to attend some conferences in Europe and Asia to publicize and promote the importance of this work.

Collaborations

- Kriston Brooks, Pacific Northwest National Lab (PNNL)
 - Provided critical inputs for manufacturing cost analysis for heat exchangers
- Amgad Elgowainy, Argonne National Lab (ANL)
 - Help in validating manufacturing cost model results & effect of qualitative factors (e.g., number of jobs created)
- Daryl Brown, Pacific Northwest National Lab (PNNL)
 - Provided data on HRS capital costs (HRSAM)
- Tetsufumi Ikeda, HySTU program, Japan
 - HRS installations in Japan
- Kareem Afzal and Osama Al-Qasem, PDC Machines
 - Provided critical inputs for manufacturing cost analysis for compressors
- Tetsuya Tanaka, Hitachi compressors, Japan
 - Provided some specifications for H_2 compressors for Japanese market
- Sean Shunsuke Chigusa, Kobelco Compressors, Japan/USA
 - Provided some inputs for hydrogen compressor
- Industry stakeholders: provided estimates for dispenser cost (SunDyne, Tescom, Swagelok, HyDAC, High Pressure Equipment, Rust Automation & Control, SBS, MyDax, Welcon, Russels Technical, Thermofin, etc.)

Project Summary

- **Relevance**: to provide a framework for technoeconomic and supply chain analyses for hydrogen refueling stations
- **Approach**: Bottom-up cost analysis cost models, detailed supply chain maps and investigation of qualitative factors effect on manufacturing competitiveness
- Technical Accomplishments and Progress:
 - Manufacturing cost models for hydrogen compressors, storage tanks, dispensers, chillers and heat exchangers, and onsite hydrogen production equipment
 - Trade flow maps for global HRSs
- **Collaboration**: Sandia, ANL and PNNL
- Proposed Next-Year Research:
 - Complete manufacturing cost models for onsite hydrogen production equipment
 - Complete supply chain analysis and trade flow mapping for onsite hydrogen production equipment
 - Investigate effect of qualitative factors in the manufacturing competitiveness

Technology Transfer Activities

• Not applicable for this cost analysis

Thank you

2

Ahmad Mayyas (<u>Ahmad.Mayyas@nrel.gov</u>) <u>www.manufacturingcleanenergy.org</u>

🗲 🤿 C 🖍 🗋 www.manufacturingcleanenergy.org

Operated by the Joint Institute for Strategic Energy Analysis

About - Products & Publications Working with Us News -

The Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global clean energy manufacturing. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

A Critical Role

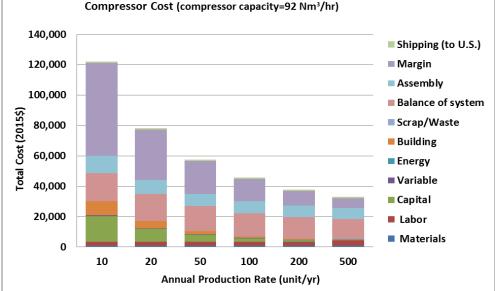
The Clean Energy Manufacturing Analysis Center understands manufacturing's critical role in the new energy economy. Learn more about the CEMAC mission and vision.

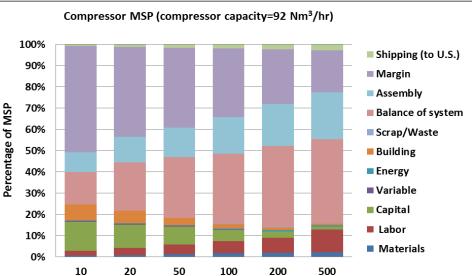
Objective, Insightful

CEMAC analysis illuminates supply chains and manufacturing across energy sectors. Learn more about CEMAC's products and publications.

Work With CEMAC

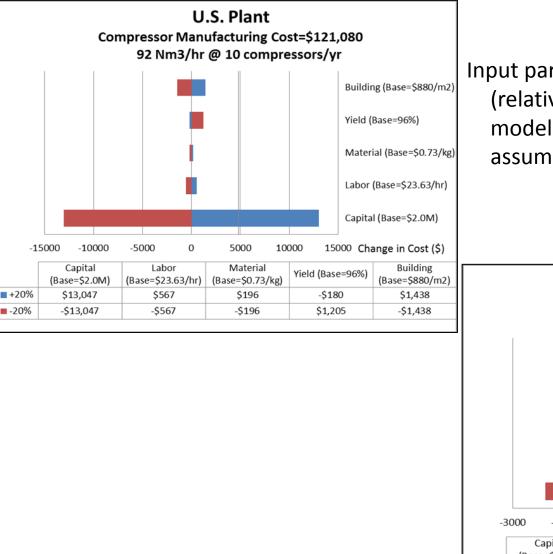
CEMAC is ready to work with you. Learn how the Clean Energy Manufacturing Analysis Center's world-class analysis can support your work.

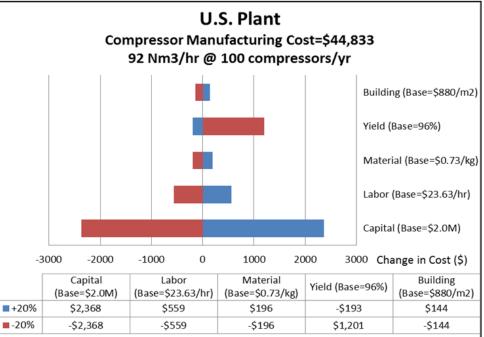



Backup Slides

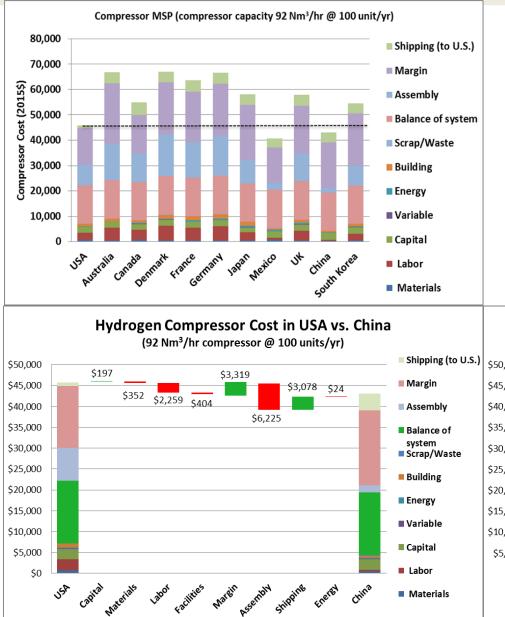
Minimum Sustainable Price - Compressor

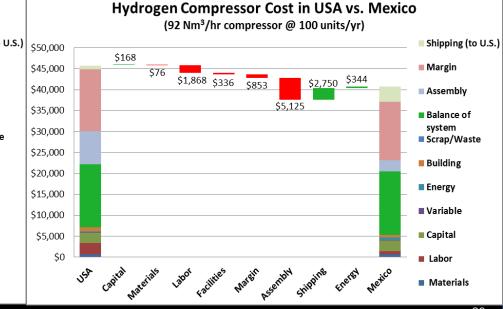
Assumptions


- 1 stage compressor
- Compression ratio < 7
- P_{in}= 150-200 bar, P_{out}= 350-420 bar (5,000-6,000 psi)
- Manufacturing cost model for compressor case and internal parts only
- Balance of system was added to the direct manufacturing cost of the compressor case & internal parts
- Profit margin was estimated using weighted average cost of capital (WACC) method
- Shipping cost is assumed for shipping compressors from East Coast to West Coast in this example

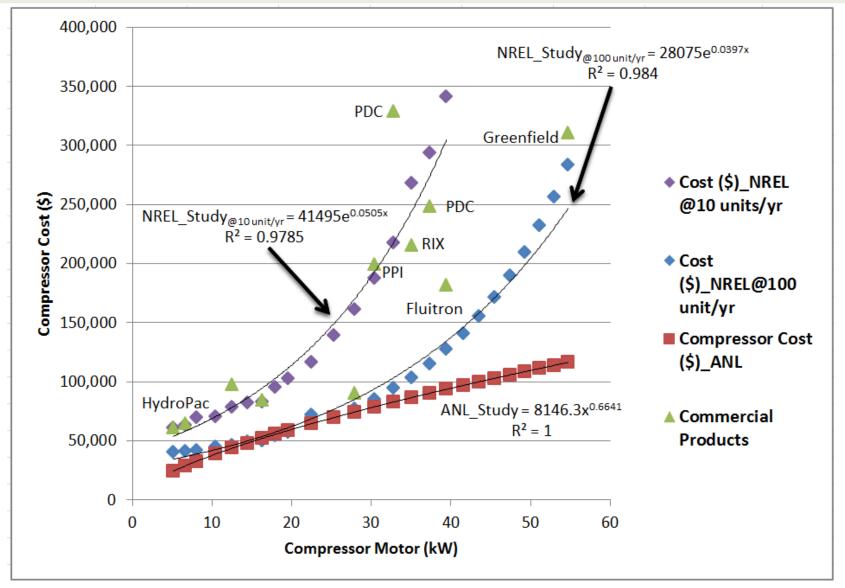


Annual Production Rate (unit/yr)


Sensitivity Analysis


Input parameters were varied by +/- 10% (relative) from base values to identify the modeled price sensitivities to various input assumptions

Minimum Sustainable Price - Compressor



- United States advantages are lower shipping and interest rates and longer experience in this field
- China's advantage relative to the U.S. is driven by lower labor, low material cost, building and energy costs
- Mexico's advantage relative to the U.S. is driven by lower labor and building costs

CEMAC – Clean Energy Manufacturing Analysis Center

Estimation of Compressor Cost

Elements of Manufacturing Analysis

- Innovation potential
- Manufacturing experience: *Learn* by Doing
- Intellectual property
- Cost of energy
- Cost of manufacturing
- Availability of investment capital
- Low-cost labor requirements & availability
- Product quality
- Skilled labor requirements & availability
- Tax policy
- Currency fluctuations

- Import and export policies
- Automation/advanced manufacturing
- Raw material availability
- Ease of transportation
- Existing supply chains
- Synergistic industries and clustering
- Existing or growing market
- Ease of doing business
- Safety
- Regulations
- Inventory costs and supply chain delays