Demonstration of Fuel Cell Auxiliary Power Unit (APU) to Power Truck Refrigeration Units (TRUs) in Refrigerated Trucks

Kriston Brooks, PNNL (PM, Presenter) Gus Block, Nuvera Fuel Cells Mauricio Blanco, Ballard Power Systems

June 7, 2017

Project ID# MT014

PNNL-SA-125673

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: April 2013
- Project End: March 2018
- Percent complete: 70%

Barriers Addressed by This Project

- B. High hydrogen fuel infrastructure capital costs
- E. Lack of life cycle cost and performance data to demonstrate low investor risks
- F. Inadequate user experience for fuel cell applications

Budget

- FY16/17 DOE Funding: \$0K
- Previous DOE Funding: \$2M

Allocation of Funding	Spent to Date
DOE Funding for Subcontracts	\$986K
Contractor In-Kind Cost Share	\$795K
Remaining Commitments	\$108K
PNNL Expenditures	\$212K

Partners

Role	Nuvera Team	Ballard Team
Fuel Cell/ Integration	Nuvera	Ballard
TRU Producer	Thermo King	Carrier
Business Case	Thermo King	Zen
Demonstration	TBD	Walmart

Relevance: Project Purpose

Overall Objective: To demonstrate the viability of fuel cellbased Transport Refrigeration Units (TRUs) for refrigerated Class 8 trucks using demonstrations and business case development.

Barriers Addressed on This Project

- B. High hydrogen fuel infrastructure capital costs
 - Provide DOE funding with 50% cost share to support the demonstrations
- E. Lack of life cycle cost and performance data to demonstrate low investor risks
 - Develop business case with value proposition analysis and total cost of ownership modeling
 - Evaluate demonstration results and share with industry
- F. Inadequate user experience
 - Perform demonstration in real world application
 - Develop safety plan to address operations and refueling
 - Involve primary TRU companies—Thermo King/Carrier Pacific Northwest

NATIONAL LABORATORY

Relevance: Where does it make most sense?

- "Hub and Spoke" Distribution Centers where single H₂ source can supply all vehicles
 - Return to same distribution center to refuel (preferably every day)
- Hydrogen already on site for refueling fuel cell forklifts—safety and regulatory issues addressed
 - Larger H₂ usage does not require major infrastructure modifications
- Government regulations and incentives drive the need for alternatives to diesel TRUs (e.g. anti-idling laws, noise, emissions)
- Successful replacement of diesel engine (power, mass, volume)
 - Acceptable Economics

Approach

Develop and demonstrate two fuel cell systems in commercial operations

- Assess the system performance
- Analyze its market viability

Accomplishments

Nuvera System Packaging Complete

- Nuvera—Phase II Completion in May
 - DOE/PNNL/Nuvera decision to restart project
 - Nuvera finalized system packaging, wiring, controls, software, communication
 - Thermo King designed new Power Distribution Unit:
 - DC/DC for auxiliaries, updated control software, integration

Accomplishments Nuvera's Successful Low Power Integrated Test

Accomplishments Ballard Sized FC Power: Walmart TRU Data

- Typical Walmart Data from one of 16 TRUs evaluated
- High ambient temperature in Winter Haven, FL

Decision: Requires 18 kW maximum power

Proudly Operated by Battelle Since 1965

Accomplishments Ballard Sized H₂ Fuel Tank: Walmart TRU Data

- 83% of TRUs would require < 10 kg H₂/day
- ► Highest H_2 usage for 22 hrs = 19 kg H_2 /day
- Design with 20 kg H₂ Tank for 2 days operation or 24 hours of freezer load operation

Accomplishments Walmart ORBCOMM location data used to observe the trailer routes followed

- Trailers did not always return to the same distribution center
- One reefer traveled between Brundige, AL and Winter Haven, FL, the other worked exclusively out of one DC

LABORATORY

Accomplishments Ballard System Design Work

- Hybrid vs. non-hybrid
 - Decision non-hybrid: runs at maximum power for hours and transients are relatively slow
- Location of System on the Trailer
 - Bottom of the trailer challenging but preferred
- System BOM and Packaging
 - Commercially available components identified with modeling tool
 - Initial layout of main fuel cell system

Accomplishments Ballard Business Case Challenges

Total Cost of Ownership Model

Low Diesel Cost and High H₂ Cost

		Hydrogen Cost [\$/kg]												
		\$	2.00	\$	3.00	\$	4.00	\$	5.00	\$	6.00	\$ 7.00	\$	8.00
	\$ 2.00	\$	(23,606)	\$	(38,967)	\$	(54,328)	\$	(69,690)	\$	(85,051)	\$ (100,413)	\$(115,774)
[uo	\$ 3.00	\$	(10,548)	\$	(25,910)	\$	(41,271)	\$	(56,633)	\$	(71,994)	\$ (87,356)	\$(102,717)
galle	\$ 4.00	\$	2,509	\$	(12,853)	\$	(28,214)	\$	(43,575)	\$	(58,937)	\$ (74,298)	\$	(89,660)
\$/£	\$ 5.00	\$	15,566	\$	205	\$	(15,157)	\$	(30,518)	\$	(45,880)	\$ (61,241)	\$	(76,603)
st [\$ 6.00	\$	28,623	\$	13,262	\$	(2,100)	\$	(17,461)	\$	(32,822)	\$ (48,184)	\$	(63,545)
S	\$ 7.00	\$	41,680	\$	26,319	\$	10,958	\$	(4,404)	\$	(19,765)	\$ (35,127)	\$	(50,488)
sel	\$ 8.00	\$	54,738	\$	39,376	\$	24,015	\$	8,653	\$	(6,708)	\$ (22,069)	\$	(37,431)
Die	\$ 9.00	\$	67,795	\$	52,433	\$	37,072	\$	21,711	\$	6,349	\$ (9,012)	\$	(24,374)
	\$ 10.00	\$	80,852	\$	65,491	\$	50,129	\$	34,768	\$	19,406	\$ 4,045	\$	(11,316)

TCO = (\$37,746) @ \$3.27/gallon diesel

Accomplishments Ballard Business Case Challenges

- Total Cost of Ownership Model
 - Low Diesel Cost and High H₂ Cost
 - High Fuel Cell System Capital Cost (~2X diesel engine)
 - Power Electronics (24% of total) → needed to match TRU's 480VDC 3 phase requirement
 - Cost of 20 kg H₂ Tank (34% of total)
 - Cost based on only 500 units/year

NATIONAL LABORATORY

Accomplishments Business Case Challenges

- Total Cost of Ownership Model
 - Low Diesel Cost and High H₂ Cost
 - High Fuel Cell System Capital Cost (2X diesel engine)
- Government Regulations/Incentives
 - Loss of 30% Federal Business Energy Investment Tax Credit (expired 12/2016)
 - Alternatives to Federal and California Regulations

Technology	12/31/16	12/31/17	12/31/18	12/31/19	12/31/20	12/31/21	12/31/22	Future Years
PV, Solar Water Heating, Solar Space Heating/Cooling, Solar Process Heat	30%	30%	30%	30%	26%	22%	10%	10%
Hybrid Solar Lighting, Fuel Cells, Small Wind	30%	N/A	NA	N/A	N/A	N/A	N/A	N/A
Geothermal Heat Pumps, Microtubines, Combine Heat and Power Systems	10%	N/A						
Geothermal Electric	10%	10%	10%	10%	10%	10%	10%	10%
Large Wind	30%	24%	18%	12%	N/A	N/A	N/A	N/A

NATIONAL LABORATORY

Ballard Phase I Decision

- Ballard No-Go into Phase II
- Lessons Learned
 - System cost needs to be more competitive
 - This is due mainly to the high costs for the power electronics and hydrogen tanks needs for this application
 - System mass too high--leave ~1000 lbs product on the dock
 - This includes the added shielding/packaging needed to protect the hydrogen tanks and FC system when mounted to the trailer
 - Disparity between diesel and H₂ cost
 - Loss of range--niche market needs to have systems return daily
 - Federal and local incentives/regulations need to be more favorable
 - Insufficient hydrogen and infrastructure
 - Challenge even at locations with MH equipment
 - Major development effort to create a product
 - Cost effective off-the-shelf system needed

Responses to Previous Year Reviewer's Comments

FY16 Reviewer Comment	FY17 Response to Comment
Customer test locations are not tied into any other existing infrastructure making it more expensive and higher risk.	Ballard demonstration location is to use existing H_2 infrastructure. Nuvera identifying new demonstration partners includes those with existing H_2 infrastructure.
It is unclear what the Nuvera fuel cell status is.	Provided details of the current fuel cell system and what still needs to be completed before the demonstration.
A definition of "sized appropriately" for the developing system is needed.	Data is provided for sizing of Ballard's fuel cell and H_2 tank.
One of the main goals of the project could be development of a working business case model for an early fuel cell based TRU market	Thermo King (Nuvera Team) and Zen Energy Solutions (Ballard Team) developed a business case with TCO model

NATIONAL LABORATORY

Collaborations

Part	ner	Project Roles
DOE		Sponsorship, Steering
PNI	NL	Management and Coordination, Data Collection and Analysis, Business Case Development
NUVERA	BALLARD	Fuel Cell Supplier, System Integrator
	Carrier	Integration of APU with TRU
		Business Case Development
None	Walmart 🔆	Demonstration Partner

Special Thanks

Pete Devlin, DOE-EERE Fuel Cells Technology Office

Pacific Northwest NATIONAL LABORATORY

Remaining Challenges and Barriers

Identify a Demonstration Site for Nuvera Team

- Must return nightly to the distribution center
- California is the preferred site
- Finalize Nuvera cell based APU that:
 - Is capable of on-road operation (vibration, safety, on-road projectiles)
- Need Market Pull
 - Generate the required interest to bring the system to market

Future Work Phase III Nuvera Scope Before Demo

Prepare system for on-road operations

- Install stack cover
- Design external enclosure
- Address vibration issues and test
- Final safety assessment

NATIONAL LABORATORY

Future Work **Milestones and Deliverables**

Milestone Description	Owner	Milestone Type	% Complete	Notes
Project Pause		N/A	N/A	Feb. 2015 to Sept. 2016
Complete Phase II: System Development Phase III Go/No-Go	Nuvera	Go/No-Go	70%	May 2017
System Safety Assessment & Integration with Trailer		Standard	Not started	Nov. 2017
Demonstration			Not started	Dec. 2017 to Mar. 2018
Milestone Description	Owner	Milestone Type	% Complete	Notes
Phase I: System Design and Market Assessment	Ballard	Go/No-Go	100%	April 2017

Technology Transfer Activities

Share Results

- Press Releases, Interviews, Presentations, Publications
- Develop Business Cases and Commercialization Plans
 - Working with largest TRU manufacturers in the U.S.
 - Working with potential customers for demonstrations
- Look for Potential Future Funding for Follow-On Demonstrations

Project Summary

Relevance	Demonstrate the technical and commercial viability of fuel cell-based Transport Refrigeration Units (TRUs) for refrigerated Class 8 trailers.
Approach	 Demonstrate fuel cell system in commercial applications Assess the system performance Analyze its market viability
Technical Accomplishments and Progress	 Nuvera successfully integrated and tested system in the laboratory at low power Zen developed business case with Carrier/Ballard Ballard developed system design and completed the Phase I Go/No-Go Decision
Collaborations	 Nuvera and its team: Thermo King Ballard and its team: Carrier, Zen Energy Solutions, Walmart
Proposed Future Research	Continue to oversee projectPerform multiple demonstrations and analyze results

Kriston Brooks

Project ID# MT014

(509) 372-4343 kriston.brooks@pnnl.gov

Contact:

Kriston P Brooks The State of t

