Hydrogen Compression Application of the Linear Motor Reciprocating Compressor (LMRC)

Buddy Broerman (PI) Jeff Bennett (Co-PI)

Southwest Research Institute

Norm Shade

ACI Services

June 6, 2017

SOUTHWEST RESEARCH INSTITUTE

Overview

Timeline

Barriers

Description	Date / Timeframe	Barriers	Targets	
Project Start Date	9/05/14	Low Compressor	>73% Isentropic	
Project End Date	10/04/18	Efficiency	Efficiency* <\$240,000 per	
Project Duration	4.0 years	Capital Cost		
Project Progress	2.5 years	ORNA Costo		

Budget

- Total Project Budget: \$2,284,553
 - Total Cost Share: \$459,160
 - Total Federal Share: \$1,825,393
 - Total DOE Funds Spent*: \$1,091,641

* As of 3/31/17 (includes ACI's funds spent through Feb 2017) 06/06/2017

<\$4,800 per year Uaivi Cusis * DOE Project Target ** Targets in the 2012 MYRD&D for 2020

Partners

- **US DOE**: Project Sponsor and Funding
- SwRI: Project Lead
- **ACI Services**: Project Partner & **Cost Share**

Relevance

- Project Objectives:
 - Improve isentropic efficiency above 95% by minimizing aerodynamic losses
 - Low speed

$$\eta_C = \frac{\text{Isentropic compressor work}}{\text{Actual compressor work}} = \frac{w_s}{w_a}$$

1

- High valve area ratio
- Reduce capital costs to half that of conventional reciprocating compressors by minimizing part count
- Reduce required maintenance by simplifying the compressor design to eliminate common wear items
- BP1: Analyzed and Designed LMRC to be tested in BP2 & BP3
- Current Budget Period (Fiscal Year 2017, BP2):
 - Fabricated and assembled the LP Stage LMRC
 - Fabricated/assembled compressor test stand for LP Stage
 - Testing is planned for near future

Approach / Milestones

Fiscal Year 2015 – Design All 3 Stages

Task Title	Milestone Description (Go/No-Go Decision Criteria)	% Complete
Stage Sizing	Provide cylinder size for each stage and accompanying calculations.	100
Basic Mechanical Design	Provide FEA results and analysis, basic structural design, and material selection.	100
Linear Motor Design	Provide linear motor design, including required magnet size and configuration of windings.	100
Bearing and Seal Design and Analysis	Provide selected bearing and seal technology and supporting calculations.	100
Valve Selection	Provide the valve type that will be used for the proposed system.	100
Pulsation Control Design	Provide pulsation control design and/or techniques such that the predicted piping system pulsations are at or below the amplitudes specified in the API Standard 618.	100
Cooling System Design	Provide cooler sizes and cylinder cooling specifications	100
Materials and Coatings Selection	Deliver material specifications and manufacturer availability	100
Performance Predictions and Comparison	Deliver performance predications and final CFD calculations	100

Approach / Milestones

Fiscal Year 2016 – Fabricate and Test LP Stage

Task Title	Milestone Description (Go/No-Go Decision Criteria)	% Complete	Planned Quarter
Detailed Mechanical Design	Provide final fabrication drawings of each compressor component and manufacturing/assembly drawings of the components (order long-lead items late Q5 or early Q6)	100	5
Estimate Cost Projection for full- scale version	Deliver cost estimate and calculations for a full-scale version	100	6
Design of Compressor Test Stand for LP Stage	Test Matrix for Bench Scale Testing. Plans for Commissioning, Safety, and Operation of Test Stand. Provide final compression system and test stand design.	100	6
Low Pressure (LP) Stage Compressor Parts Fabrication	Order or fabricate the compressor parts in accordance with the detailed design.	100	7
Low Pressure (LP) Stage Compressor Assembly	Complete assembly of the compressor based on the detailed design.	100	7
Test Stand Construction, Compressor Integration	Manufacture the test stand using the drawings and details created in the previous budget period.	95	7
Commissioning & Startup of Demonstration Model	Verify and report the operability of the compressor and test stand.	15	8
Bench Scale Testing	Report on the completion of the single-stage testing.	0	8

Accomplishments and Progress: Overall Concept & Test Loop

SOUTHWEST RESEARCH INSTITUTE

Accomplishments and Progress: 3D Model: Piston Close-up

Accomplishments and Progress: Winding Coils Onto Casing

- Length = 42.6"
 OD on ends = 9"
- OD on ends = 9"

Accomplishments and Progress: Central Casing at ACI with Windings

Accomplishments and Progress:

Special Tooling Made for Assembling Magnets on Shaft

Aluminum assembly fixture used on assembly press to place one magnet and one spacer together to form an assembled pair

Aluminum pushing fixture with magnet/spacer pair being pushed by the hydraulic press into lower assembly tube

Stainless steel retainer pins inserted to hold upper magnet/spacer pair in place (against the repelling force of the lower magnet) so hydraulic press force can be relieved and the pushing fixture can be removed. 10

SwRI H2 Linear Compressor

Accomplishments and Progress: Fabrication and Assembly of Parts

Accomplishments and Progress: Assembly of Parts – Piston into Holder

Diametral clearances of backup seal ➢ 0.00012" on #1 ➢ 0.00010" on #2

Accomplishments and Progress: LMRC Installed in Frame at Test Loop

- Test layout designed for accessibility and part re-use.
- Final package layout will be much tighter

Discussions with the Hydrogen Safety Board resulted in a few test loop modifications to increase the overall safety

06/06/2017

Accomplishments and Progress: Initial Testing

Initial testing with piston and magnets assembly locked indicates forces reasonably consistent with predictions

SwRI H2 Linear Compressor

Accomplishments and Progress: Planned Test Matrix

Variable Parameters									
Test No.	Speed (cpm)	Suction Pressure (psia)	Suction temperature (deg F)	Pressure Ratio	Piston Seal	Test Gas	Decision Point/Other Testing Aspect		
		Design P							
1	330	290	80	3.57	Polymeric	Helium	May test at lower pressure to reduce temperatures in system		
2	330	290	80	3.57	Polymeric	Hydrogen	Capture hydrogen sample before and after to evaluate contamination		
Polymer Seal Performance Check - If polymer seal performance OK, go to test 3 - If polymer seal performance not OK, go to test 8							Seal not performing = mass flow rate is less than 98% of design flow (< 9.8 kg/hr)		
		Vary Cor	mpressor Conc	litions					
3	300	290	80	3.57	Polymeric	Hydrogen			
4	360	290	80	3.57	Polymeric	Hydrogen			
5	330	260	80	3.4	Polymeric	Hydrogen			
6	330	320	80	3.8	Polymeric	Hydrogen			
7	Max	290	80	3.57	Polymeric	Hydrogen	Test at max speed system can handle		
	Comp	ressor Internal	Inspection & S	Switch Pis	ton Seals				
8	330	290	80	3.57	Ceramic	Hydrogen	Verify condition of polymeric seals Install ceramic seals Inspect alignment bushing and evaluate wear		
Vary Compressor Conditions									
9	300	290	80	3.57	Ceramic	Hydrogen			
10	360	290	80	3.57	Ceramic	Hydrogen			
11	330	290	80	3.4	Ceramic	Hydrogen			
12	330	290	80	3.8	Ceramic	Hydrogen			
13	13 Max 290 80 3.57 Ceramic Hydrogen						Test at max speed system can handle		
Compressor Internal Inspection						Verify condition of compressor components			

Accomplishments and Progress:

Responses to Previous Year Reviewers' Comments

- Concern that a 100 bar inlet restricts the usefulness of the LMRC in H₂ applications The LMRC is designed for a 20 bar inlet pressure. There was a reference to a 100 bar inlet pressure that was only used for a direct comparison of the LMRC design with the newer DOE target.
- Concerns about the overall efficiency of the compressor + driver The originally specified DOE goal for the project was isentropic efficiency, which is the efficiency of only the compression process. There was no mention of an overall system efficiency goal or requirement. Project focus has been on compression efficiency. The decision to mount coils externally reduced initial development risk, which reduces the efficiency of the driver in this initial prototype. Possible means to improve overall efficiency once proof of concept has been accomplished have been evaluated.
- Concerns that compressor footprint is too large The test loop layout is not ideal. It is laid out in a way that equipment is accessible for alterations during testing and to allow reuse of existing equipment. Previously shown layouts configure the equipment on space-efficient vertical panels that greatly reduce the footprint.
- The project needs input from a compressor manufacturer. For clarification, partner and co-funder, ACI Services designs custom compressors and compressor components, and supplies major components and systems to the industry as well as to the major compressor OEMs, and is highly-regarded in the gas compression industry.

Collaborations

- DOE Sponsor, Steering
- SwRI Project lead, design, location for testing
- ACI Services Overall project partner and cost-share provider, lead for mechanical design, fabricator of many parts
 - SwRI & ACI Services worked together to design the LMRC and test loop.
- Thar Energy Project partner, seal and ceramic piston design and fabricator
- Dexter Magnetic Technologies **Neodymium Iron Magnets**
- TechniCoil Coils and winding
- Enterprise Power Corp. Power Controller

Discussed with each collaborator how their individual components fit into the overall project

All major suppliers/ manufacturers are in the USA

Remaining Challenges and Barriers

- **Challenge**: Electric power controller failure
- **Resolution**: Found internal (SwRI) resource with extensive experience designing these devices. Expediting delivery of new device.
- Challenge: Seal life
- **Resolution**: Ceramic seal is an alternative
- Challenge: Maintaining budget
- Resolution: Weekly budget re-evaluations and borrow test equipment to leverage benefit of large SwRI testing community
- **Challenge**: Full scale production cost target
- **Resolution**: Investigate further the possibilities of increasing the LMRC size instead of speed & numbers

Proposed Future Work

- 1. Finish Commissioning
- 2. Testing
- 3. Data Analysis

Confirm the Go/no-go criteria are met:

- □ flow rate of 10 kg/hr of Hydrogen ±10%,
- a discharge pressure of ~71 bara (1030 psi) ±10%, and
- an isentropic efficiency of > 73% is achieved
- 4. Proceed to BP3 Fabricate stages 2 and 3 then test stages 2 and 3 in series with stage 1

Any proposed future work is subject to change based on funding levels.

06/06/2017

Summary

- BP1 complete, BP2 is nearly complete
- Efficiency predictions greater than 95%
- LMRC & Test Loop are fabricated & assembled
- Currently no technical/commercial off-ramp issues identified

Buddy Broerman, Principal Engr.

EBroerman@swri.org

210-522-2555 Jeff Bennett, Research Engr.

Jeffrey.Bennett@swri.org 210-522-3761

Questions?

Norm Shade Senior Consultant, and President Emeritus <u>NShade@aciservicesinc.com</u> (740) 435-0240 ext. 504

84"

Technical Back-Up Slides

DAQ wiring is complete

Technical Backup Slide

Control panel for controlling LMRC motion and providing real-time feedback during operation

SwRI LMRC Compressor Code

Technical Backup Slide

Seal Selection Criteria:

1. Face seals with zero gap for all primary & secondary (back-up) seal locations

2. Impermeable & resistant to 100% hydrogen gas

3. Explosive decompression resistant

Approved by T. Anderson; Application Engineering Parker Hannifin O-Ring Division

** outer seal will be V1238-95 Fluorocarbon due to lower pressures

Stage	Max. Internal	Temp. Range (°F)							
	Operating Press. (psig)		Size (in.)	Material	Manufacturer	Durometer (Shore A)			
1	1,125	-15 to 400	3/32	V1238-95 Fluorocarbon	Parker Hannifin	95			
2	4,101	-15 to 400	3/32	V1238-95 Fluorocarbon	Parker Hannifin	95			
3	14,069 (inner seal**)	-15 to 400	1/8	Inconel 718 w/gold plate	Parker Hannifin	NA			

Technical Backup Slide

Materials selected for each of the compressor components, and the significant mechanical and physical properties for each

COMPONENT	MATERIAL	TENSILE	YIELD	ENDURANCE	MAGNETIC	COEFFICIENT OF	YOUNG'S	INFORMATION		
		STRENGTH	STRENGTH	STRENGTH	PROPERTIES	EXPANSION (77-212 °F)	MODULUS	SOURCE		
						(IN/IN/ºF)			1. Corportor Steel Corp. Data Sheet	
Central Casing	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	2 AMS 5727D Standard for A 296	
Magnet Spacers	AISI M1010, 1010 hot rolled bar	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 106 psi	3,4,5,15	3 - MatWeb	
	or AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X10-6	29 X 106 psi		4 - Ryerson Data Book	
Piston Rod	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	5 - ASM Metals Handbook	
Magnet Retainer	AISI M1010, 1010 hot rolled bar	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 10 ⁶ psi	3,4,5,15	6 - Special Metals Co. Data Sheet	
	or AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X 10 ⁻⁶	29 X 10 ⁶ psi		7 - "Physical Properties Data Compilations Releva	int t
Piston Holder	Incoloy 903 Sol & Age	190 ksi	160 ksi	68 ksi	Magnetic	4.0 x 10 ⁻⁶	21.35 x 10 ⁶ psi	6,14	Energy Storage - V Mechanical Properties Data	",
	or Carpenter CTX-1				Magnetic	4.19 X 10 ⁻⁶		1	HM Ledbetter, NSRDS , Jan. 1982	
Piston	Sapphire	58 ksi	NA	NA	NA	3.4 x 10 ⁻⁶	50 x 10 ⁶ psi	16	8 - Suhm Spring Works Data Book	
Cylinder	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	9 - AMS 4027N Standard (Aluminum Alloy Sheet and Plate)	
Head	AISI 316 Annealed	85 ksi	36 ksi	29 ksi	Non-Magnetic (1.008Mu)	8.89 x 10 ⁻⁶	28 x 10 ⁶ psi	3,18	10 - Alcoa Aluminum Handbook 11 - Iron Castings Handbook (Iron Castings Society)	
Suction/Discharge									12 - ASTM A536 Standard (Specifications for Ductile Iron Casti	ings)
Valves	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	13 - ASTM B152 Standard (Copper Sheet, Strip, and Plate)	
Rider Bands	PEEK (PTFE filled)								14 - ASTM A193 B7 Standard (Alloy Steel & Stainless Steel Bolt 15 - Yeadon Handbook of Small Electrical Motors (Soft Magnet	ting)
Thar Seal Rings	Filled PTFE								Materials Properties)	u.
Thar Seal Springs	Elgiloy (Cold Drawn & aged)	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10 ⁶ psi	8	16 - Roditi Data Sheet	
Seal Retainer Bolting	AISI 316 ASTM F593 Gr 2 Cond.CV	100 ksi	65 ksi	34 ksi	Non-Magnetic (1.008Mu)	8.89 x 10 ⁻⁶	28 x 10 ⁶	22	17 - Clark, R. "Magnetic Properties of Materials"	
Valve Springs or	Elgiloy (Cold Drawn & aged) or	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10 ⁶ psi	8	18 - AZO Materials Web Site	
Piston Travel Stop Springs	MP35N (Cold Drawn & aged) or	330/230 ksi	NA	NA	Non-Magnetic	NA	34 x 10 ⁶ psi	8	19 - "A Silicon - Containing, Low-Expansion	
	AISI 316 (Cold Drawn)	245/110 ksi	NA	NA	Non-Magnetic (1.008Mu)	NA	28 x 10 ⁶ psi	8,3	Alloy with Improved Properties" , DF Smith	i ani
Valve Poppets	PEEK (Unfilled)	13-15 ksi	NA	NA	NA	26.7 x 10 ⁻⁶	NA	20,21	JS Smith, Huntington Alloys	
Valve Nose Gasket	Cooper (OFHC)C10200/C10100	31.9 ksi	10 ksi	NA	Non-Magnetic (0.999Mu)	NA	NA	3,17	20 - MakeItFrom.com, Materials Properties	
Valve Retainer	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	21 - Victrex - PEEK Data Sheet	
Cylinder Cooling Jacket	Aluminum 6061-T6	40 ksi	35 ksi	12.4 ksi	Non-Magnetic (1.000 Mu	13.1 x 10 ⁻⁶	10.0 x 10 ⁶ psi	9,10,17	22 - ASTM F593 Standard Gr.2 Cond. CW	
Coil Housing	Ferritic Ductile Iron Casting								(Specification for Stainless Steel Bolts)	
	ASTM A536 Gr. 60-40-18	60 ksi	40 ksi	27 ksi	Magnetic (1500Mu)	6.5 x 10 ⁻⁶	24.5 x 10 ⁶ psi	11,12		
External Bolting	Alloy Steel A193-B7	125 ksi	105 ksi	61.2 ksi	Magnetic	6.78 X 10 ⁻⁶	29.7 x 10 ⁶ psi	14,3		
Bolting for Piston	17-4PH H1150-D or	125 ksi	105 ksi	62.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3		
Holder & Magnet Retainer	17-4PH H1150-M	115 ksi	75 ksi	57.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3		