

Wide Bandgap Chalcopyrite Photoelectrodes for Direct Solar Water Splitting

PI: Nicolas Gaillard Hawaii Natural Energy Institute

2017 DoE Annual Merit Review June 8th 2017

Project ID#: PD116

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10/1/2014
- Passed GNG#1: 10/6/2015
- Passed GNG#2: 10/5/2016
- Project end date: 9/30/2017

Budget

- Total budget funding: \$3,050,000
 - DoE share: 100%
 - Contractor share: 0%
- Total DoE funds spent: \$2,089,000

(as of 04/2017, including Nat. Labs).

Barriers

Challenges for PEC H2 production technology:

- Materials Efficiency (AE)
- Materials Durability (AF)
- Integrated device configuration (AG)
- Synthesis and Manufacturing (AJ)

Partners / primary role

- HNEI (N. Gaillard)
 → Absorber / p-n junction fabrication
- Stanford (T. Jaramillo)
 → Surface catalysis and corrosion protection
- UNLV (C. Heske)
- ightarrow Bulk/sub-surface/surface characterization
- LLNL (T. Ogitsu)
 → Absorber/interface theoretical modeling
- NREL PEC team (K. Zhu, T. Deutsch, J. Turner)
- ightarrow Device validation and PEC reactor design
- NREL CIGS group (C. Muzzillo)
 → New chalcopyrites and buffers

Relevance - Objectives

- Long-term goal: identify efficient and durable copper chalcopyrite-based materials which can operate under moderate solar concentration and capable of generating hydrogen via PEC water splitting at a cost of \$2/kg or less.

- **This project**: (1) develop new wide bandgap (>1.7 eV) copper chalcopyrites compatible with the hybrid photoelectrode (HPE) design, (2) demonstrate at least 15% STH efficiency and (3) generate 3L of H₂ under 10x concentration ("Type 4" PEC reactor) in 8 hours.

Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production: Photoelectrode System with Solar Concentration ^a									
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target				
Photoelectrochemical Hydrogen Cost ^b	\$/kg	NA	17.30	5.70	2.10				
Capital cost of Concentrator & PEC Receiver (non-installed, no electrode) ^c	\$/m ²	NA	200	124	63				
Annual Electrode Cost per TPD H ₂ ^d	\$/ yr-TPDH₂	NA	2.0M	255k	14k				
Solar to Hydrogen (STH) Energy Conversion Ratio ^{e, f}	%	4 to 12%	15	20	25				
1-Sun Hydrogen Production Rate ^g	kg/s per m ²	3.3E-7	1.2E-6	1.6E-6	2.0E-6				

Relevance – Benefits of copper chalcopyrites for PEC H₂ production

2. Bandgap tunable

PV driver and PEC electrode can be stacked for efficient PEC H₂ production

3. Cost-effective processes developed

Production

Solution processed chalcogenide material (ONR funding)

The CIGSSe class can meet DoE's material target cost of \$60/m².

4. Efficient PEC water splitting demonstrated with CIGSSe

Take home message: copper chalcopyrites (CuInGaSe₂) are excellent candidates for PEC water splitting. New materials with wider bandgaps are needed to relocate PV driver(s) under the photocathode (HPE structure) in order to achieve STH efficiencies >10%.

Lower III-V costs **Optical concentration** Anti-reflection

> **III-V PEC** systems

Bandgap tuning Buried junctions Durability testing Bubble management Non-PGM catalysts **Membranes**

> Thin-film PEC systems

Higher TRL

Absorbers and interfaces processing compatibility

HydroGen Consortium

Sunlight to H₂ Interfaces Catalysts TH efficiency

tis onomics offerse assessment Aus Investigate Crosscutting Challenges assessment

Crosscutting comparentials des

Particle PEC systems

Lower TRL

Reactor designs Selective catalysis Gas separation Mass transfer

Approach – Milestones

- Task 1. PV-grade wide bandgap absorbers: AE and AJ barriers
- Task 2. Sub-surface energetics improvement (p/n junction): **AE and AG barriers**
- Task 3. Surface catalysis and corrosion resistance: AE and AF barriers
- Task 4. Device certification and efficiency benchmarking: AG barrier

Task#	FY15 Milestones		Status				
1	Synthesize a CuInGaS $_2$ thin film material with controlled stoichiometry & microstructure		Complete				
2	Fabricate Cu(In,Ga)S ₂ cells with Voc> 600 mV	03/2015	Complete				
3	Durability > 500 hrs at 8 mA/cm ² with a chalcorpyrite photoelectrode	06/2015	25%				
4	Chalcopyrite photoelectrode with bandgap > 1.7eV that generates at least 10-12 mA/cm2	09/2015	Complete				
Go/N	Go/No-Go decision criteria: Demonstrate a chalcopyrite photoelectrode material with bandgap > 1.7eV that generates a						
photocurrent density of at least 10-12 mA/cm ²							
Task#	FY16 Milestones						
1	$Cu(In,Ga)S_2$ solar cells with a photoconversion efficiency > 6%		Complete				
4	Photocurrent density relevant to 15-16% STH with chalcorpyrite 12-13 mA/cm ²		Complete				
3	Durability > 750 hrs at 8 mA/cm ² , with a stretch goal of 1,000 hrs	06/2016	45%				
2	Fabricate Cu(In,Ga)S ₂ cells with Voc> 750 mV	09/2016	Complete				
Go/No-Go decision criteria: Demonstrate a wide bandgap chalcopyrite-based heterojunction with an open circuit potential of at							
least 750 mV							
Task# FY17 Milestones							
1	Photocurrent density relevant to 16-17% STH with a chalcopyrite 13-14 mA/cm2	12/2016	92%				
2	Fabricate Cu(In,Ga)S ₂ cells with Voc> 900 mV	03/2017	88%				
3	Durability > 1,000 hrs at 8 mA/cm ² , with a stretch goal of 2,000 hrs	06/2017					
4	HPE PEC device with a standalone STH of >15% generting at least 3L of H2 in 8 hrs.	09/2017					

Approach – Integrating experiment, computation and theory

Materials Genome initiative (MGI) / Energy Materials Network (EMN)

Innovative materials discovery and development for faster product development. Key elements include:

- Integrating experiment, computation, and theory
- Making digital data accessible
- Creating a world-class materials workforce
- Leading a culture shift in materials research

Accelerating materials development using integrated modeling, synthesis and advanced characterizations:

1. New wide bandgap materials discovery using theoretical modeling: bandgap, conductivity type and defect density.

2. Theory-guided synthesis of wide bandgap chalcopyrites using state-of-the-art vacuum-based deposition tools.

3. Advanced surface and interface spectroscopy analyses of newly formed materials to validate modeling and refine synthesis.

Accomplishments – Task 1: PV-grade absorbers

AE / AJ barriers

- 1. Materials development through integrated Theory-Synthesis-Characterization
 - a. Identifying competing crystallographic phases in wide bandgap chalcopyrites
 - \rightarrow Case of CuGa(S,Se)₂: calculated bandgap values assuming chalcopyrite phase do not match with experiments.

Ordered Vacancy **C**ompounds (OVC: $CuGa_5S_8$) detected in CGSSe by Raman.

New bandgap calculations show better match between CGSSe and OVC.

2.5 Chalco CuAu Exp OVC 0.0VC 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Next step: identify if OCVs are responsible for CGSSe's low transmittance.

b. Identifying new materials candidate with improved electronic properties

 \rightarrow Successful integration of **theory**, synthesis and characterization in the development of chalcopyrite materials.

Accomplishments – Task 1: PV-grade absorbers

b. Solid-state properties of wide bandgap CuInGaS₂

- \rightarrow Excellent photo-conversion achieved with CIGS₂ (up to 80%), J=12 mA/cm² (PV configuration),
- \rightarrow High free carrier density can limit performance: to be addressed with sub-surface doping (see next slide).

Accomplishments – Task 2: Sub-surface energetics

AE / AG barriers

1. Sub-surface treatment for improved energetics

- \rightarrow CuGa₃Se₅ co-evaporation
- → Alkali (K, Na) post treatment
- \rightarrow n-type CdS buffer treatment
- \rightarrow Solar cell integration & testing

NREL's CIGSe cluster tool

Treatment	E _g (eV)	V _{oc} (mV)	J _{sc} (mA/cm²)	
CuGa ₃ Se ₅	1.93	713	3.3	
+ air anneal		789	4.2	4 P0818
+ light soak		800	4.3	
CuGa ₃ Se ₅ + <mark>K</mark> GaSe ₂	1.84	718	5.0	
+ air anneal		747	5.2	+ air anneal
CuGa ₃ Se ₅ + <mark>Na</mark> F	1.83	574	5.7	
+ air anneal		719	7.1	+ light soak
CuGa ₃ Se ₅ + Cu(GaIn) ₃ Se ₅	1.70	734	8.9	0.0 0.2 0.4 0.6 0.8 1.0
+ air anneal		752	9.7	voltage (v)

 \rightarrow CuGa₃Se₅ and CuGaSe₂ with Eg> 1.7 eV and open circuit potential > 750 mV successfully fabricated (GNG #2).

Accomplishments – Task 2: Sub-surface energetics

AE / AG barriers

Electronic and chemical surface

structure at each process step:

Interface optimization

work function

Composition and chemical bonding

Band edges, surface band gap, and

2. Improving energetics with n-type buffer materials

b. 2^{nd} round: In_2S_3 n-type buffer

- \rightarrow New molecular ink-based process successfully developed to synthesize In₂S₃ buffer,
- \rightarrow In₂S₃ buffer allows for higher photo-conversion in UV (+3mA/cm²): critical for wide bandgap chalcopyrites,
- → Preliminary tests show good durability for In_2S_3 in 0.5M sulfuric acid (pH 0.5).

Accomplishments – Task 3: Surface catalysis/corrosion resistance

AE / AF barriers

н | S^гH %06|%0

1. Corrosion resistance enhancement using $MoS_2 - TiO_2$ films

- 1. Deposit 5 nm TiO₂ and 4 nm MoO_x on CGSe by ALD
- 2. Convert MoO_x to MoS_2 using H_2S
- 3. Conduct CP tests at 8 mA cm⁻² with one LSV every 25 hrs to determine stability
- 4. Probe degradation mechanism using ICP-MS of electrolyte

T.R. Hellstern, A. D. DeAngelis, L.A. King, N. Gaillard, T.J. Jaramillo. In Preparation

Accomplishments – Task 3: Surface catalysis/corrosion resistance AE / AF barriers

2. Electrochemical and spectroscopic characterization of CdS/CGSe photoelectrodes

Spectroscopic Characterization (UNLV)

T.R. Hellstern, D. Palm, J. Carter, A. D. DeAngelis, M. Blum, N. Gaillard, C. Heske, T.J. Jaramillo. In Preparation

1. Co-planar vs. Tandem PEC system: techno-economic considerations

 \rightarrow STH efficiency is the parameter with the largest leverage on H2 production costs.

- \rightarrow Co-planar: STH_{max}=15%, H₂ @ \$4.09/kg
- \rightarrow Tandem: STH_{max}=25%, H₂ @ \$2.51/kg

→ Tandem devices makes better use of real estate and offer superior efficiency.

2. Paths for chalcopyrite-based tandem PEC devices

- \rightarrow Temperature-resistant transparent conductive oxide (TCO) identified for monolithic tandem: Mo-doped InO₂,
- → Optical analyses demonstrate a good match between CIGSe PV driver and CGSe photocathode: J> 10 mA/cm²,
- → Upcoming monolithic devices: Si/IMO/CGSe, then GaAs/IMO/CGSe and finally CIGSe/IMO/CGSe.

Accomplishments - Response to reviewers' comments

"The project is mainly focused on PV and its link to hydrogen production is not clear."

- → Testing absorber candidates in PV configuration provides reliable (no photo-corrosion) and statistical data to accelerate their development. For a given chalcopyrite, we find that photocurrent densities measured on both PEC and PV cells are nearly identical,
- → In the final tandem **PEC** device, the transparent conductive oxides (ZnO, ITO) used for solid-state characterization will be replaced with MoS₂/TiO₂ HER/protective layers,
- → We note that all known chalcopyrite PEC candidates suffer from poor surface energetics with respect to water splitting. We have demonstrated that buffer layers (CdS, In₂S₃) improve chalcopyrite photocathodes surface energetics with onset potential anodic shift up to 800mV. With the current state-of-the-art, this surface treatment is a necessary step towards un-biased water-splitting.

"The work has too much emphasis on efficiency. This does not mean a lot if the device can not run for any reasonable period of time."

- → In this project, we have decided to address absorbers, energetics and durability in 3 distinct tasks, such that no single roadblock will hinder the overall progress. Two of these tasks (1 and 2) are focused on efficiency, and one (task 3) on durability,
- → Our buried junction approach offers the possibility to develop both the efficient photo-converter (absorberbuffer) and the protective coating independently,
- → We note that durability over 1,500 hrs has been demonstrated with atomically flat silicon photocathodes protected with MoS₂. Our current effort is to optimize MoS₂ deposition on rough polycrystalline chalcopyrites to meet our 1,000-hr durability target.

Collaborations

- US DoE PEC working group: white papers (metal oxides and chalcopyrites) and standardized test protocols,

- International Energy Agency/HIA/Annex 26: collaboration with international institutes and universities including the Institute for Solar fuels (HZB), Delft University, University of Warsaw (Poland)...etc,

Project-specific collaborations:

- Stanford, UNLV, LLNL and NREL: partners in this project (ALL TASKS),
- University of Louisville (M. Sunkara): photoluminescence on CuGaSe₂ materials (TASK 1),
- Jozef Stefan Institute-Slovenia (M. Mozetic): U.S./European project on sulfides (CIGS₂) (TASK 1),
- EMPA (A. Braun): in-situ characterization of phase transformation during materials synthesis (TASK 1),
- University of Los Andes-Colombia (S. Barney): reactive sputtering of ZnOS buffers (TASK 2),

- University of Bordeaux-France (A. Rougier): development of temperature-resistant TCOs as intermediate layers for multi-junction CIGSSe solar cells and PEC devices (TASK 4).

Remaining challenges & barriers / Proposed future work

Task 1. PV-grade wide bandgap absorbers

Challenges/Barriers: chalcopyrites' chemistry (i.e. Cu-poor, S-rich...etc.) can have a profound impact on their opto-electronic properties.

Proposed Future Work: - finalize our study on CuGaSSe and CuInGaSSe and conclude on the effect of Ordered Vacancy Compounds, - re-focus effort on best candidates for final tandem PEC structure: Cu-poor CuGaSe₂ and CuGa₃Se₅.

Task 2. Sub-surface energetics improvement (p/n junction)

Challenges/Barriers: best open circuit potential are 100mV lower than project final goal (900mV)

Proposed Future Work: - finalize the development of alternative buffer layers, including In₂S₃ and ZnOS, - focus on most promising chalcopyrite sub-surface doping: Cd²⁺, Na⁺ and K⁺.

Task 3. Surface catalysis and corrosion resistance

Challenges/Barriers: new MoS₂ and TiO₂ ALD process successfully developed, yet durability limited to 350 hours

Proposed Future Work: - continue to develop ex-situ and in-situ spectroscopic techniques to better understand degradation mechanisms, - evaluate SiO₂ passivation layer as alternative to TiO₂ to meet the 1,000+ hrs durability goal.

Task 4. Device certification and efficiency benchmarking

Challenges/Barriers: create the first chalcopyrite-based monolithic tandem PEC device.

Proposed Future Work: - validate tandem structure using CGSe, temperature-resistant TCO (Mo:InO₂) and silicon or GaAs model PV drivers, - benchmark STH efficiency of best performing tandem device and build reactor for PEC H₂ production.

Any proposed future work is subject to change based on funding levels.

Project summary

Create the first chalcopyrite-based HPE device with low-cost, PV-grade and durable thin film Relevance materials to meet DoE's efficiency and durability targets. Focus on the development of wide bandgap chalcopyrite PEC materials, identify compatible Approach buffers to improve energetics (p-n junction), evaluate Earth-abundant materials for both HER catalysis and corrosion protection and assess the STH efficiency of the complete HPE device. (1) Identified two possible causes to explain poor opto-electronic properties of some candidates: Ga-related point defects and Ordered Vacancy Compounds, (2) refined synthesis protocols to create phase-pure 1.8 eV CuInGaS₂ absorbers generating 12 mA/cm², (3) reached Accomplishments over 750 mV Voc with surface-modified chalcopyrites (GNG#2), (4) improve durability with MoS₂/TiO₂ coating up to 350 hrs (+ 100 hrs compared to FY16) and (5) demonstrated temperature-resistant Mo-doped InO₂ can serve as TCO in monolithic tandem PEC devices. Project-specific collaboration with U.S. and international teams to address barriers in each of **Collaborations** the 4 technical tasks. (1) Focus on candidates with proven opto-electronic properties (CuGaSe₂, CuGa₃Se₅), (2) combine sub-surface treatments with corrosion-resistant In_2S_3 buffers to meet the 900mV V_{or} **Proposed future** target, (3) continue development of conformal MoS₂ and TiO₂ coatings using ALD to meet 1,000work hour durability targets and (4) benchmark the STH efficiency of CGSe/IMO/PV (PV: Si, GaAs or CIGSe).

Technical back-up slides

Accomplishments – Task 2: Sub-surface energetics

AE / AG barriers

c. PV-biased photoelectrosynthesis of H₂ from water using CdS/CGSe photoelectrode and GaAs PV-driver

L.C. Seitz, et. Al. ChemSusChem 7 (5), 2014, 1372

Accomplishments – Task 1: PV-grade absorbers

AE / AJ barriers

3. Accelerating PV-grade Cu(In,Ga)S₂ material development

Take home messages:

- Three chalcopyrite (CIGS, CGSSe, CIASe) alloys identified with optimum bandgap energy for PEC applications,
- New synthesis/testing (solid-state & PEC) strategy developed to accelerate materials discovery,
- 1.55 eV PV-grade CIGS with great potential for PEC H₂ production successfully developed with this approach.