

Tunable Photoanode-Photocathode-Catalyst Interface Systems for Efficient Solar Water Splitting

G. Charles Dismukes, (PI) Eric Garfunkel (co-PI), Martha Greenblatt (co-PI),

Rutgers, The State University of New Jersey, Piscataway, NJ 08854. AMR 2017

NSF-CBET/DOE-EERE joint Project ID# PD121

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: Sept 1, 2014
- Project End Date: Aug 31, 2017
- Percent complete: 89%

Budget

- Total Project Budget: \$749,996
 - Total Recipient Share: NSF disallows
 - Total Federal Share: \$749,996
 - Total DOE Funds Spent: \$667,496 as of 4/10/17

Barriers addressed

- AE. Materials Efficiency Bulk and Interface
- AF. Materials Durability Bulk and Interface
- AI. Auxiliary Materials
- AJ. Synthesis and Manufacturing

Unfunded Collaborators

Current:

- Andrew Rappe (Upenn)
 - Ni-P HER theory
- EMN (pending):
- Andriy Zakutayev (NREL)
 - ZnSnN₂ photoabsorber
- Todd Deutsch (NREL)
 - High flux/diurnal analysis
- Daniel Friedman (NREL)
 - GaInP₂/GaAs photoabsorber

Relevance

Objectives:

Long-term: Effectively leverage the knowledge base of materials chemistry developed in the prior years to fabricate semiconductor/catalyst interfaces, both at the photoanode and photocathode, that utilize abundant elements and low cost fabrication methods. Combine these individual cells in tandem forming a monolithic device that attains or exceeds the DOE benchmark STH efficiency (~10%).

Specific to Current Year (2016-2017):

- Develop a novel passivation layer (TiN) that prevents corrosion of the low bandgap photoabsorber (Si).
- Fabricate a photocathode consisting of a low cost photoabsorber (Si), HER catalyst (nickel phosphide, here NiP₂), and a passivation layer (TiN). Test performance and stability under acidic and basic conditions.
- Investigate wider bandgap semiconductors as complementary tandem photoabsorbers in the photoanode, specifically perovskite oxynitride (SrNb(O/N)₃) tantalum nitride (Ta₃N₅), and halide double perovskite (Cs₂AgBiBr₆)

Relevance to DOE H₂ & FC Program

(DOE section 3.1.5 of FCTO Multi-Year Research, Development, and Demonstration Plan)

- *Materials Efficiency Bulk and Interface (Barrier AE):* Developing methods that utilize Si adds value the high efficiencies of commercial cells. When paired with a TiN, absorption and injection efficiency is high.
- Materials Durability Bulk and Interface (Barrier AF) Fabricated photocathode shows long term stability (>24 hours) while retaining high performance (145mV overpotential vs Pt for HER at 10mA/cm²)
- Auxiliary Materials (Barrier AI) With TiN passivation, silicon can now be employed as both a substrate and a low bandgap photoabsorber in the photocathodic half cell. This reduces interfaces and materials costs.
- Synthesis and Manufacturing (Barrier AJ) Wide bandgap photoabsorber thin films that are fabricated by spin coating has significantly lower capital costs compared to CVD or PVD techniques.

Project Focuses for FY2017:

A-D and combinations thereof

- Prepare and characterize thin films of A) SrNbO₂N, Ta₃N₅, and Cs₂BiAgBr₆
- Fabricate functioning half cells, 1 and 2 (right) from the combination of A + C and B + D using above developed methodology
- Benchmark half-cells for stability and performance

Approach – this year

Photocathode

- HER catalyst/passivation/photoabsorber = NiP₂/TiN/n⁺p-Si
- Determine most optimal nickel phosphide compound (Ni_xP_y) for integration with device
- Identify a passivation layer that is transparent, highly conductive, has good band matching with Si, and prevents the formation of nickel silicides
- Fabricate and characterize performance of device in both acidic and basic electrolytes

Future effort (FY 2017)

- Optimize system variables:
 - Film thickness (passivation layer and HER catalyst), different nickel phosphide polymorphs (Ni₅P₄, and Ni₃P), fabrication steps (temperature, time)
- Begin long term testing >100h using choronoamperometry
- Stabilize interface, investigate corrosion mechanism
 - Time-dependent AFM, ion scattering and cross-section TEM will monitor surface and interface changes

Approach – this year

Photoanode

- Double perovskites as a wide band gap photoabsorber material
- Synthesized bulk powders of Cs₂AgBiBr₆. Verified the stability and optical properties of this class of compounds.
- Developed a method to thin films with these materials
- Ta₃N₅ as a wide band gap photoabsorber material
- Synthesized thin films of Ta₃N₅
- Confirmed viability of a tandem photoabsorber: Ta₃N₅ on Si.
- Tested Ta₃N₅ as a photoanode for OER
- Developed a passivation layer that is transparent, conductive, and stable
- Future effort (FY 2017)
- Determine the band structure of Cs₂AgBiBr₆ thin films experimentally
- Develop a half device: LiCoO₂/passivation layer/photoabsorber #1 and #2
 - Achieve a clean interface between OER catalysts and photoabsorber and establish baseline performance
 - Introduce passivation layer (NiO et. al.) between OER catalyst and phoabsorber to increase stability of devices

Developed a thin film fabrication route to a complete device

Atomic Structures Characterized

XRD for each fabrication step

- To determine crystalline phase of each layer, thicker layers (~ 50 nm) of TiN and Ni were deposited.
- TiN shows an oriented (200) peak, which is the same orientation as the cubic Si substrate (100).
- Oriented, thermally evaporated Ni is observed.
- Polycrystalline NiP₂ was successfully prepared by conversion from Ni by chemical vapor phosphidation. Other Ni_xP_y compounds can be prepared similarly.

70

Thin Films Characterized

X-ray Photoelectron Spectroscopy

- Ni 2p core level spectrum shows metallic Ni feature without surface oxidized Ni.

- P 2p core level spectrum shows that main phosphorous has metallic character.

Photo-properties of NiP₂/TiN/n⁺p-Si

PV

- The *Jsc* of the PEC measurement from Pt/TiN/n⁺p-Si (reference) sample shows similar Jsc to a solar simulated PV (n⁺p-Si). This indicates the TiN passivation layer has negligible light absorption.

- The Vph of the PEC, measured by the difference between light and dark OCP demonstrates that the NiP₂ and TiN layer did not significantly change the Voc of Si photoabsorber.

Photoelectrochemistry

Activity

Stability

- NiP₂/TiN/n⁺p-Si shows high activity in both acidic and basic media. *Jsc* of both averaged cyclic voltammorgrams suggest that light absorption interference is negligible from the NiP₂ and TiN layer (compared to *Jsc* of n⁺p-Si). In acidic media, NiP₂ requires only a 145 mV overpotential against a Pt⁰ catalyst, and it shows photostability for more than 25 hours without failure.

- TiN is (200) oriented while Ta_2O_5 is deposited amorphous. During ammonolysis, the Ta_2O_5 is converted to a polycrystalline Ta_3N_5 .

Photanode NiO passivation layer developed

UPS

- Freshly sputtered NiO films charge due to insulating behavior. A post-sputter anneal (data not shown) allows higher hole conductivity. Conductivity changes from insulating to metallic ($\rho < 50 \ \Omega \cdot cm$)

Inverse/Photoemission Spectroscopy

- The experimentally determined band gap of the annealed NiO is wide ($E_{gap} = 3.4eV$), which further promotes its candidacy as a passivation layer in the photoanode.

Preliminary PEC of NiO/Ta₃N₅/TiN/n-Si

- V_{ph} is observed but is very low (20mV).

- At increasing potentials an anodic current is observed.

Half-cells are unstable due to photocorrosion. Optimization of the passivation layer (thickness and post-anneal) and experiments to thoroughly evaluate each layer's contribution to the PEC properties are in progress.

Double perovskite halide (Cs₂AgBiBr₆) synthesized as photoabsorber

- Bulk powders match those reported previously. Large crystals are formed during solution synthesis.

- Bandgap is \sim 2.3eV from UV-visible diffuse reflectance, in line with other reports.

Spin-coated thin films of Cs₂AgBiBr₆

Development of a solution processing route

Heating on a hotplate Image: Cited and C

Yield 72%

- Excess solution decanted & the crystals are washed with ethanol

Fabricated film

- Triple layered spincoated $Cs_2AgBiBr_6$ films on top of ZnO/FTO.

Conclusions

Photocathode

- Successful formation of the polycrystalline NiP₂ thin film (~ 17 nm) with TiN passivation interlayer on a silicon photoabsorber. Other Ni_xP_y options open.
- Developed TiN passivation interlayer to prevent thermal diffusion of Si during phosphidation reaction that forms NiP₂, yielding a non-diffusing interface.
- Metallic NiP₂ and TiN layers did not significantly interfere with light absorption of silicon photoabsorber thereby obtaining similar *Jsc* to bare Si (PV measurement).
- The half cell device demonstrated high activity in both acid (pH 0) and base (pH 14). Low 145 mV overpotential was required vs. ref. Pt catalyst in acid.
- The developed device was stable for over 25 h without failure.

Photoanode:

- A route to thin films of Ta₃N₅ on Si for tandem photoabsorber applications has been identified.
- NiO passivation layer is conductive and transparent promoting its use in the photoanode, though preliminary PEC data needs more understanding.
- Spin-coated Cs₂AgBiBr₆ has been demonstrated as a low-cost, scalable candidate for the wide bandgap photoabsorber in a tandem PEC.

- <u>Key FY2017 technical results</u>:
 - A stable (>25h in acid with no significant change to operating current 10% gain in the first 10 hours due to activation; base has same stability but instead a 10% loss in operating current in the first 10 hours), highly active (145mV overpotential for HER at 10mA/cm² vs Pt in 0.5M H₂SO₄) photocathode utilizing a TiN passivation layer was fabricated and characterized.
 - Scalable low-temperature routes to wide bandgap absorbers (SrNbO₂N, Ta₃N₅, Cs₂AgBiBr₆) that can be fabricated upon silicon (low bandgap photoabsorber) were identified and investigated with the intent to optimize the interfacial chemistry on route to a full tandem device

Relating to EMN HydroGEN

- Looking for colloborators that have these capabilites:
 - Wide and/or narrow band gap semiconductors
 - Diurnal testing
 - In-situ e-chem analysis techniques
- Things our team has and can collaborate with:
 - Thin film HER and/or OER catalyst integration with your device
 - Characterization
 - "ultra"-Scanning Tunneling Electron Microscope (STEM)
 - Sub-nm scale
 - Vibration, plasmon, interband-transition and core-shell transition spectra capable
 - Medium Energy Ion Scattering (MEIS)
 - High-resolution-surface "Rutherford backscatter technique"
 - Helium Ion Microscopy (HeIM)
 - High resolution even for an untreated semiconductor

