Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass

PI: Hong Liu Oregon State University June 7, 2017

Project ID PD129

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 02/01/16
- Project End Date: 01/31/19*
- * Project continuation and direction determined annually by DOE

Budget

- Total Project Budget: \$1,670K
 - Total Recipient Share: \$167K
 - Total Federal Share: \$1,500K
 - Total DOE Funds Spent*: \$583K
 - * As of 3/31/17

Barriers

- Low hydrogen molar yield (AX)
- High electrode (cathode) cost (AAA)
- Low hydrogen production rate (AAB)

Partners

- **US DOE**: project sponsor and funding
- **OSU**: project lead; cost-share funding
- **PNNL**: co-project lead
- **ONAMI**: cost-share funding

Project Objective:

Develop a microbial electrochemical system for H_2 production from lowcost feedstock (lignocellulosic biomass and wastewater) at a cost close to or less than \$2/kg H_2 .

Approach/Strategy to Achieving DOE's target:

Characteristics	Units	Current Status	Project Target	Commercial Target
Feedstock		hydrolysate/	hydrolysate/	hydrolysate/
		wastewater	wastewater	wastewater
Feedstock cost contribution	$kg H_2$	1.29/0	0.98/0	0.98/0
Capital cost contribution	\$/kg H ₂	0.82/2.77	0.80/1.51	0.44/0.78
Electricity cost + other	\$/kg H ₂	1.19/2.00	0.75/1.05	0.60/0.75
operational cost				
Total cost	\$/kg H ₂	3.31/4.80	2.55/2.58	2.03/1.54
Credits	\$/kg H ₂	0/-10	0/-10	0/-10
Final cost	\$/kg H ₂	3.26/-7.04	2.55/-7.42	2.03/-8.46

Using wastewater as feedstock can generate a credit as much as -\$10/kg H₂ assuming:

- A surcharge of \$0.6 per pound of BOD discharged
- Generating 1 kg H₂ corresponding to 17.6 pounds of BOD reduction
- Sewage system available on site

Approach

Overall approach:

Develop a hybrid fermentation and microbial electrolysis cell (F-MEC) system that can be integrated with lignocellulose pretreatment/hydrolysis or wastewater treatment processes for H_2 production.

Uniqueness of the approach:

- Use low-cost feedstock
- Combine strengths of dark fermentation and MEC processes
- Reduce capital/operational costs with low-cost and low-overpotential cathode
- Reduce operational cost with novel reactor design and operational conditions
- Apply cost performance model throughout the project to prioritize development

Approach/Milestone

Phase I Fermentation and MEC optimization (FY 16-17)	Accomplished
Milestone 1: Identify a bacterial culture capable of producing H2 from all major sugars with > 10% yield	100%
Milestone 2: The activity of hybrid nonprecious metal electrocatalyst higher than or equal to Pt.	100%
Milestone 3: H_2 production rate >0.2 m ³ H_2/m^2 cathode/day using a cathode surface area of >20 cm ²	100%
Go/NoGo : Reaching a fermentative hydrogen production rate of 8 L _{H2} /L _{reactor} /day	Met (Jan. 31 2017)
Phase II Hybrid F-MFC system design/fabrication (FY 17-18)	
Milestone 1: H2 production rate >0.3 m ³ H ₂ /m ² cathode/day using a cathode surface are of > 100 cm ²	90%
Milestone 2: The stability of hybrid nonprecious metal electrocatalyst higher than or equal to Pt	60%
Milestone 3: Finish the design of the hybrid reactor	30%
Go/NoGo: Reaching hydrogen production rate of 24 L H ₂ /L _{reactor} /day using the hybrid reactor	20%

Accomplishments and Progress

Task 1: Fermentative hydrogen production

- Immobilization of bacterial culture
- Stability of the immobilized culture
 - Increase cell density in continuous-flow reactors
 - Increase H₂ production rate

Repeated Hydrogen Production Over 80 Days

Summary: The beads containing the immobilized cells can maintain their original shapes with reliable H_2 production over 80 days of batch operation.

Task 1: Fermentative hydrogen production

Continuous H₂ production using the immobilized culture

Fermentative hydrogen production rate is affected by mixed sugar concentrations and HRTs (upper figure) and the immobilized biomass concentration (bottom figure)

Summary: Hydrogen production can reach over 10 L/L/day in a continuous flow reactor with immobilized fermentative bacteria using mixed sugars as feedstock.

Task 2: Hydrogen production in MECs

Identification of a microbial electrochemical culture capable of producing H₂
from liquid fermentation products

Summary: Our lab exoelectrogenic culture enriched with acetate is capable of utilizing all fermentative products for hydrogen production.

Task 2: Hydrogen production by MECs:

Optimization of MECs: provide design and operational parameters for the continuous flow reactor

Summary: Mixing condition outweighs electrode spacing and buffer concentration, suggesting that the continuous reactor should be designed to facilitate mixing.

Task 2: Evaluate hydrogen production by MEC

Inhibition of methanogens

 H_2 loss due to methanogens: $H_2 + CO_2 \rightarrow CH_4 + H_2O$

Summary: Periodically injecting low cost chemical inhibitor (<1 cent/kg H_2) to the headspace of 10 the reactor can effectively inhibit methane production without affecting exoelectrogens.

Task 3: Develop low-cost cathode materials with low overpotential

Catalyst synthesis and test

Summary: Synthesized MoP HER catalysts with high activity (comparable to Pt) and high durability under ex-situ test.

Task 3: Develop low-cost cathode materials with low overpotential

Understanding structure-property relationship

P-terminated surface

Summary: Atomic structure characterization and surface chemistry analysis points to a P-terminated surface of MoP catalysts that facilitates HER.

Task 3: Develop low-cost cathode materials with low overpotential

Performance of the catalyst in MECs

Task 6: Cost performance modeling – biomass hydrolysate

Summary: Project costs based on measured I_d (5 mA/cm²)/low capital cost (bar chart \$2.47/kg H2) and 2X measured I_d/quoted capital costs (tornado) are higher than the target. Multiple pathways to meet the target are identified.

14

Task 6: Cost performance modeling - wastewater

\$600/m³

5 mA/cm²

\$60/m²

٠

Summary: Project costs based on measured I_d /low capital cost (bar chart \$2.42/kg H2) and 2X measured I_d/quoted capital costs (tornado \$2.58/kg H2) are higher than the target. Multiple pathways to meet the target are identified.

Responses to Previous Year Reviewers' Comments

• This project was not reviewed last year.

Collaborations

Partner	Project Roles	
Oregon State University Prof. Liu research group Prof. Murthy's group Center for Genome Research and Biocomputing	Project lead, management and coordination Bioreactor design and operation Lignocellulosic feedstock selection and treatment Microbial community characterization	
Pacific Northwest National Laboratory Dr. Shao's group Dr. Viswanathan group	Cathode catalyst and catalyst layer coating Cost performance modeling	
Oregon Nanoscience and Microtechnologies Institute	Supplemental funding to support a graduate student to work on this project	

Remaining Challenges and Barriers

- Hydrogen uptake by other bacteria in the mixed culture
 - Have identified a few low-cost chemicals and operational conditions to inhibit the hydrogen uptake
- Wastewater quality variation
 - Add a buffer tank
- Cathode
 - Catalyst scale up and robust catalyst coating

Proposed Future Work

Remainder of the year:

- Stability test of the cathode catalyst
- Determine the design and operational parameters of the hybrid reactor
- Hybrid reactor design and fabrication
- Cost performance modeling

• FY 2018-2019:

- Lab and on-site evaluation of the hybrid reactor
- Cost performance modeling

Technology Transfer Activities

• Technology-to-market or technology transfer plans or strategies

- IP related to reactor design and operation
 - Communicated with OSU technology transfer office on the method for methane
 inhibition in MECs
- IP related to cathode catalyst/material
 - Filed an IDR related to cathode catalyst.
- Scale up the system
- Identify industry partners for commercialization

Plans for future funding

Seeking support from industry partners

Objective: Demonstrate a novel microbial system for efficient H₂ production from low-cost biomass.

- **Relevance:** Provide a green and renewable approach for H₂ production at a cost less than \$2/kg.
- **Approach:** Develop a hybrid fermentation and microbial electrolysis cell (F-MEC) system that can be integrated with lignocellulose pretreatment/hydrolysis or wastewater treatment processes for H₂ production.

Accomplishments:

- Identified microbial communities that are capable of utilizing all major components in lignocellulosic biomass hydrolysates and food/beverage wastewater and their fermentative products for H₂ production;
- Developed an immobilization method that can increase the fermentative bacteria density in reactors with stable H₂ production;
- Discovered a low-cost chemical that can effectively inhibit methanogens and reduce the H₂ uptake in MECs;
- Synthesized MoP HER catalysts with high activity (comparable to Pt) and high durability.