

Proudly Operated by Battelle Since 1965

MagnetoCaloric Hydrogen Liquefaction

PNNL: JAMIE HOLLADAY, KERRY MEINHARDT, EVGUENI POLIKARPOV, ED THOMSEN

EMERALD ENERGY NW: JOHN BARCLAY

AMES: JUN CUI, IVER ANDERSON, BRANDT JENSEN

JUNE 2017

PROJECT ID # PD131

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline:</u>

Project Start Date: 10/1/2015
Project End Date: 09/30/2018

Barriers addressed:

H: High-Cost Low Energy Efficiency of Hydrogen Liquefaction

Budget:

- Federal share: \$2.25M
- Planned funding in FY17: \$750k

Partners:

- Emerald Energy NW, LLC:
- AMES/ISU

Relevance: Increase figure of merit, reduce system cost, and meet DOE targets Pacific Northwest

NATIONAL LABORATORY

Proudly Oberated by Battelle Since 1965

Project Objectives:

EMERALD ENERGY NW

Solutions with Power and Energy

- Demonstrate H_2 liquefaction system for 25 kg/day H_2 with a projected FOM >0.5 1)
- Identify pathway to installed capital cost < \$70M 30 tonne/day 2)

30 tonne/day (small facility)	Claude cycles (current)	PNNL's MCHL project cycle (new)	DOE Target (2017) ¹
Efficiency	<40%	70~80%	85%
FOM	<0.3 (small facility) 0.35~0.37 (large facility)	~0.6 (small facility) ~0.7 (large facility)	0.5
Installed Capital cost	\$70M ¹	\$45-70M	~\$70M
O&M cost	4%	2.8%	?
Energy input	$10-15^1$ kWh/kg H ₂	5~6 kWh/kg H ₂	12 kWh/kg H ₂
[1] DOE, Multi-Year Research, Development and	Demonstration Plan, 2015	$T_{} \int_{-T_{H}}^{T_{H}} \Delta S_{}$	$_{nn}dT$

 $\dot{W}_{\text{Real}} = \dot{Q}_C \left(\frac{T_H}{T_C} - 1\right) + \frac{T_C}{\int_C^{T_H} dT}$

 $FOM = \frac{W_{Ideal}}{W_{Real}}$

Approach: Increase efficiency by using bypass flow and layered materials

Proudly Operated by Battelle Since 1965

Reduces ∆T in process heat exchanger for large increase in FOM

- Eliminates intrinsic irreversibility of Active Magnetic Regenerator (AMR) cycle of magnetic refrigerants
- 88% reduction in magnetic material
- Increase FOM from <0.4 to >0.75

Approach: Analyze; Design; Build; Test Three **Prototypes; Validate Models; Incorporate** Pacific Northwest **Results; Demonstrate LH₂**

Phase I (GEN-I & II) GEN-I (280-220 K) _____ GEN-II (280-120 K).

- **Refurbished Prometheus AMRR**
 - Prepared high-bay lab @ PNNL
 - First successful GEN-I operation
- Measured performance @ 0.25 Hz
 - 3.3 T to 0.6 T; persistent mode
 - Dual 1.05 kg Gd regenerators
 - HTG Helium @ 200 psia,
 - no by-pass flow of cold HTG
 - parasitic load; 285 K to 218 K
 - maximum T_{SPAN} ~318 K to 218 K
 - external load vs. T_{COLD}
 - Measured by-pass flow up to ~10%
 - increased net cooling by ~25 %
- **Developed GEN-II design**
 - Optimal use of bypass flow
 - magnetic material drops ~85%
 - calculated FOM > 60%
- Created design options for GEN-III
- Initial Cost analysis of LH2 AMRL

- 5 invention PPAs; 2 patent appls
- Modified GEN-I to liquefy propane
 - Very successful demo of simple AMRL
- Rotary vs Recip AMR
 - Magnetic refrigerants to Ames lab
 - Choose belt vs wheel solenoid magnets
 - Built test fixture for seal testing
 - can be sealed but friction too large
 - will modify GEN-I for GEN-II <\$\$
 - Fixed s/c magnet-cryocooler; 7 T ٠
 - Analyzed/Modeled GEN-II design
 - 8-AMRR stages with 1 mag mat'l/stage
 - Series design FOM > 50%
 - Invented 8-layer, 1-stage dual regenerator AMRR for 280 K to 120 K
 - Designed 8-layer dual reg; 1-stage AMRR
 - RDA spheres successful-taken ~ 6 months longer than expected
- Prepared 2 journal papers;
- Detailed property data base done; Fortran performance model successfully running
- Assemble and test GEN-II:
- Validate Fortran model, update \$\$

Phase II (GEN-III) GEN-III (280-20 K)

- **Refine GEN-III design**
- **Design/build/test GEN-III**

NATIONAL LABORATORY

Proudly Operated by Baffelle Since 1965

- **Fully characterize AMRL** for 1-25 kg/day LH2
- **Fully Document AMRL**
- Evaluate minimum of 2 non-rare earth based magnetocaloric materials (May be joint with CaloriCool)
- **Complete Cost Analysis**
- License Technology

Green text is current year work, blue text is previous years, and copper is planned

AMRR= active magnetic regenerator refrigerator

AMRL: active magnetic_ regenerator liquefier

Proudly Operated by **Battelle** Since 1965

Major Milestones

Fiscal Year	Milestone	Status [*]	Comments
2017 Q1	PNNL will receive from AMES 8 alloy compositions reported in Q2 report. The amounts will be sufficient for 1 AMR (2 regenerators) plus 50-100 grams extra	75%	Taking longer to synthesize materials than expected
2017 Q2	Demonstrate GEN-II, as identified in FY16 Q3 report, operation. Demonstrate multi-layer (8+ layers) regenerator with by-pass and all subsystems operational with a measured ΔT of least of 45K. (note multi-layer regenerators of more than 3 layers have never been successfully demonstrated in the literature. This is a stretch milestone).	65%	Delayed to 06/01/17
2017 Q3	GEN-II demonstrate temperature span of 280-160 K	40%	Due 06/30/17
2017 Q4	GEN-III design is completed; Design is reviewed by program manager. Working with TDM, finalize path forward.	15%	

* Status as of April 2017

Accomplishment: Bypass is proportional to field dependent heat capacity

Proudly Operated by Baffelle Since 1965

Data measured by AMES in FY17

$\dot{Q}_{Gd}(T_{COLD}) = \nu Fr_{COLD} M_{Gd} C_{Gd}(T_{COLD}, B_{0.6T}) \Delta T_{CD}(T_{COLD}) No_{Reg}$

- $\dot{Q}_{Gd}(T_{COLD})$ is the cooling power in W
- ν is the AMR cycle frequency in Hz (typically 0.1-2 Hz)
- Fr_{COLD} is a steady-state fraction of the demagnetized regenerator colder than the average T_{COLD} before hot-to-cold blow of helium heat transfer gas (typically 0.1-0.2)
- M_{Gd} is the mass of Gd in each regenerator in kg
- C_{Gd} is the total heat capacity in J/kg K of Gd at T_{COLD} and low magnetic field after demagnetization, ΔT_{CD} is the adiabatic temperature change in K from T_{COLD} upon demagnetization from high-to-low field
- No_{Reg} is the number of magnetic regenerators in the AMRR (2 in GEN-I)
- All variables in this equation are predetermined except Fr_{COLD} (coupled to heat transfer fluid flow) and best determined by modeling

Accomplishment (FY16-17): Performance simulation of the active magnetic regenerator

Proudly Operated by **Battelle** Since 1965

Performance can be calculated by solving 1-D PDE equations for fluid and solid in magnetic regenerator

Mass, momentum and energy for heat transfer fluid and energy for porous magnetic solid refrigerant & regen wall

$$Eqn \ 1 \quad \frac{\partial \rho'}{\partial t} + \frac{\partial \rho' u}{\partial x} = 0 \qquad Eqn \ 2 \quad \frac{\partial \rho' u}{\partial t} + \frac{\partial (\rho' u^2)}{\partial x} + \alpha \frac{\partial P}{\partial x} - \frac{f\rho(1-\varepsilon)|u|u}{d_p} = 0$$

$$Eqn \ 3 \quad \frac{\partial \rho' U}{\partial t} + \frac{\partial \rho' u U}{\partial t} + P \frac{\partial (\varepsilon u)}{\partial x} + \frac{6(1-\varepsilon)\alpha_{fs}}{d_p} (T-\theta) + \frac{4\varepsilon \alpha_{fw}}{d_i} (T-\psi) - \frac{f\rho(1-\varepsilon)|u|u^2}{d_p} - \frac{\partial}{\partial x} (\lambda_f \varepsilon \nabla T) = 0$$

$$Eqn \ 4 \quad \rho'_s \frac{\partial U_s}{\partial t} - E_s - \frac{6(1-\varepsilon)}{d_p} \alpha_{fs} (T-\theta) - \frac{4(1-\varepsilon)\alpha_{sw}}{d_i} (\psi-\theta) - \nabla \cdot [\lambda_s (1-\varepsilon)\nabla\theta] = 0$$

$$Eqn \ 5 \quad \rho'_w \frac{\partial U_w}{\partial t} - E_w + \frac{4(1-\varepsilon)d_i}{(d_o^2 - d_i^2)} \alpha_{sw} (\psi-\theta) - \frac{4d_i \varepsilon \alpha_{fw}}{(d_o^2 - d_i^2)} (T-\psi) - \nabla \cdot (\lambda_w \nabla \psi) = 0$$

These are coupled 1-D non-linear partial differential equations solved by finite difference numerical techniques with all materials' and fluids' temperature, pressure, flow, magnetic field dependence updated each micro time step. Original model developed in FY16, but updated with measured values of Tc, Cp, and magnetic moment

EMERALD ENERGY NW Solutions with Power and Energy

Accomplishment (FY17): Experimental results validate temperature profile changes with bypass flow

Proudly Operated by Battelle Since 1965

Temperature measurements from dual Gd regenerators Configuration: 6 Tesla, 215 g Gd Beds, 0.25 Hz

EMERALD ENERGY NW

Solutions with Power and Energy

g Materials & Everyy Solutio

DEPARTMENT OF ENGLISH

Accomplishment (FY17): Identified materials for 2-Stage H₂ liquefier

Material	Operating Temperature Span	Curie Temperature	
	К	К	
Gd	280-260	293	Stage 1
Gd _{0.90} Y _{0.10}	260-240	274	(GEN-II)
Gd _{0.30} Tb _{0.70}	240-220	253	
Gd _{0.69} Er _{0.31}	220-200	232	Market Market
Gd _{0.32} Dy _{0.68}	200-180	213	
Gd _{0.15} Dy _{0.85}	180-160	193	
Gd _{0.27} Ho _{0.73}	160-140	173	
Gd _{0.16} Ho _{0.84}	140-120	153	
Gd _{0.23} Er _{0.77}	120-100	132	Stage 2
Ho _{0.90} Gd _{0.10} Co ₂	100-80	110	(GEN-III)
Ho _{0.95} Gd _{0.05} Co ₂	80-60	90	
Gd _{0.5} Dy _{0.5} Ni ₂	60-40	70	Magen date Minist Magen Magen
Dy _{0.75} Er _{0.25} Al ₂	40-20	50	

Accomplishment FY17: GEN-II design uses unique 8 layer design with bypass to achieve $\Delta T \sim 160K$ operational span

- Multi-layer design
 - Others have tried, but never worked as expected.
 - Used same volume of material for each layer
 - Used same flow through each layer
- We hypothesize that one needs to consider each layer as an individual cycle
 - Change the material amounts as needed
 - Control the heat transfer fluid flow for each layer
 - Provisional patent submitted

Accomplishment FY17: GEN-II design uses unique 8 layer design with bypass to achieve $\Delta T \sim 160K$ operational span

Proudly Operated by Battelle Since 1965

GEN-II Design

- Heat transfer fluid flow to get heat and cold out of each layer
- Diverted flow since each layer requires a different amount of flow
- By-pass flow comes out after 8th layer

centing Materials & Every Solutions

I.E. DEPARTMENT OF ENGLISH

Accomplishment (FY17) GEN-II Design is unique 8 layers with heat transfer fluid bypass & Pacif diversion flow

Model predicts the 8 layer device will achieve 160K temperature change

Proudly Operated by Baffelle Since 1965

16

Accomplishment FY17: 8 optimal magnetic refrigerants identified for GEN-II design

Proudly Operated by Battelle Since 1965

AMES Synth- esized [*]	Layer	Material	Average T _{HOT} /T _{COLD} (K)	Curie Temp (K)	Mass of magnetic material/layer (grams)	Work rate/layer (W)	Q _{нот} /layer (W)
Y	1	Gd	280/260	293	268	11.0	132
Y	2	Gd _{0.9} Y _{0.1}	260/240	274	258	9.9	110
	3	Gd _{0.3} Tb _{0.7}	240/220	253	235	8.8	90.7
	4	$Gd_{0.69}Er_{0.31}$	220/200	232	202	7.6	71.9
	5	$Gd_{0.32}Dy_{0.68}$	200/180	213	172	6.3	54.4
Y	6	$Gd_{0.15}Dy_{0.85}$	180/160	193	139	4.9	38.4
Υ	7	$Gd_{0.27}Ho_{0.73}$	160/140	173	100	3.4	23.9
Y	8	$\mathrm{Gd}_{0.16}\mathrm{Ho}_{0.84}$	140/120	153	57	1.8	11.0

*Synthesized as of 04/20/2017, details in back-up section

different heat transfer fluid flow required in each layer

Accomplishment (FY17): Heat capacity measurements complete and used to refine by-Pacific Northwes pass flow prediction/design at high fields (AMES)

- Characterization of Cp, T_c , and magnetic moment for each material
- Heat capacity measurements all 8 alloys completed
 - Very accurate but time consuming 1 week per sample
 - Hardware adjustments were necessary

Solutions with Power and Energy

C_p (H, T) validates our molecular field model

18

NATIONAL LABORATORY

Accomplishment (FY17): PNNL shape separator developed to remove nonspherical particles

Proudly Operated by **Battelle** Since 1965

Materials from AMES

Separation after 3 passes

Pacific Northwest

Proudly Operated by **Battelle** Since 1965

Reviewer Responses

Review	Response
The authors need to select a cascade of materials with appropriately located phase transition temperatures to make this work. It is unclear whether these materials have been selected and properly characterized. It is also unclear whether the performance predictions take this into account.	We have identified materials for a 2 stage liquefaction system. The first stage, GEN-II, has 8 materials which were characterized by AMES in FY17. AMES will synthesize and characterize the stage 2 (GEN-III) materials in FY18. The performance predictions take this into account.
The investigators should clearly identify key challenges of magnetic refrigeration that were not attempted or satisfactorily solved	Key areas which were not satisfactory resolved in the Prometheus work include: 1. By-pass operation demonstration. Prometheus proposed this, but never demonstrated. 2. Multi-layer operation. 3. Advanced heat exchangers and Ortho-Para catalyst integration. 4. System design to go from room temperature to liquid
Inclusion of industry partners.	Emerald Energy NW (John Barclay) is an industrial partner who works closely with the PNNL staff. We are in discussions with several industry groups who expressed interest, but wanted to see the multi-layer operation.
The project has too many risks and assumptions for one project and should be narrowed	We focused the work on the demonstration of two critical aspects- by-pass operation and multi-layer design. We eliminated other issues to narrow the focus.
Would like to see a breakdown of the proposed system costs	This is included in the reviewer only section

Collaborations

Partner	Project Roles
DOE	Sponsorship, steering
Emerald Energy Northwest LLC	 Working with PNNL on: Design Data analysis Cost analysis
AMES Laboratory / ISU	Materials characterization Material synthesis
HDTT	Provide critical feedback and direction
CaloriCool (EMN)	Working with organizers to ensure new materials for our application will be developed

We are focusing our efforts on the key remaining challenges and barriers

Proudly Operated by Baffelle Since 1965

▶ FY17

- 8 layer operation
 - This has been a challenge for research groups in the past
 - Our data reveals the problem is in the HTF design used
 - Mitigation: Demonstrate our hypothesis and test new HTF design
- Rotating disk atomization
 - Literature is for single compounds
 - Alloy atomization is very different

FY18

- GEN-III demonstration of liquefaction
- Ortho-Para catalyst selection and integration we have developed several concepts for integration and will test them in the next year

Proposed Future Work

Proudly Operated by Baffelle Since 1965

▶ FY2017

- Integrate magnetic materials into GEN-II
- Test GEN-II
- Revise GEN-III concept design based on learnings from GEN-II
- Find additional commercial support
- FY2018
 - Receive remaining compositions for the multi-stage GEN-III system
 - Construct, commission and test GEN-III system
 - Hydrogen liquefaction
 - Complete economic analysis
 - License patented technology with collaborative agreement to develop first commercial plant

Technology transfer activities resulting in multiple patents and industrial interest

Proudly Operated by Battelle Since 1965

Industrial

- Met with multiple companies to discuss application of MCHL
 - Hydrogen liquefaction
 - Stranded NG
 - High value gas separation and recovery
- Potential future funding
 - Reaching out to other DOE agencies (EERE-AMO & FE) for alternative applications
- Patents and Licensing
 - 5 invention disclosure reports submitted
 - 2 patents applications submitted
 - 2 provisional patent applications submitted

Summary

- 6 T operation demonstrated
- Selected 8 materials (down selected from 16)
- 280 K- 120 K system invented
 - Modeled system
 - Unique flows design— diversion flow invented
 - 8 layered
- Measured key material properties
- 5 materials converted to powders
 - New separator demonstrated
- Mapped regenerator temperature profile
- Multiple papers and patents pending

We transform the world through courageous discovery and innovation.

PNNL science and technology inspires and enables the world to live prosperously, safely and securely.

DISCOVERY

Technical Back-up slides

Approach: Magnetocaloric liquefaction has potential to increase the FOM by 2x compared to conventional Claude process

- Conventional- Claude Process
 - Low efficiency, FOM = 36%
 - Theoretical 4 kWh/kg H₂
 - Real 11 kWh/kg H₂
 - Why?
 - LN₂ pre-cooled Claude cycle
 - 50% irreversible entropy

- MagnetoCaloric Liquefaction
 - FOM = 60+% (projected)
 - Solid magnetic materials
 - Entropy manipulated by magnetic fields – high reversibility
 - Bypass flow is unique to MCL

GEN-II Design is unique 8 layers with heat transfer fluid bypass & diversion

Proudly Operated by Battelle Since 1965

► GEN-II Design

- Heat transfer fluid flow to get heat and cold out of each layer
- Diverted flow since each layer requires a different amount of flow
- By-pass flow comes out after 8th layer
- The regenerator and the piping are shown in these two figures

Rotating Disk Atomization System for RE MC Powders

NATIONAL LABORATORY

Proudly Operated by Baffelle Since 1965

Tantalum atomization disk (molten droplets spun off periphery)

Rotating quench bath filled with vacuum pump oil (quenches/passivates/collects powders)

Rotating disk atomizer (RDA) makes reactive metal powders.

Co-rotating oil quench bath envelopes powders instantly, providing passivated surface film.

This unique capability was adapted for making pure rare earth (RE) and RE-RE alloys as spherical powders in the right size for magnetic refrigeration.

EMERALD ENERGY NW Solutions with Power and Energy

THE Ames Laboratory Creating Materials & Energy Solutions

30

Atomization mode selection for control of spherical powder size

Proudly Operated by **Battelle** Since 1965

EMERALD ENERGY NW Solutions with Power and Energy Ligament or direct drop disintegration mode preferred.

Target = 200µm

Gd_{0.16}Ho_{0.84} RDA-1-20 Image of Atomization Process

Nickname

Proudly Operated by Battelle Since 1965

Trigger Time 17/03/21 10:01:37.431370 Time +00001766.743

Evidence for ligament/direct drop "mixed mode" disintegration from HS still frame.

RDA-1-20_full

EMERALD ENERGY NW Solutions with Power and Energy

Rec 4390 Shutter 60.0us

Accomplishment (FY17): RDA Production of magnetocaloric powders (as of 4/2017)

Proudly Operated by Battelle Since 1965

	Layer	Material	Mass of magnetic material/layer (grams)	2.5x	Ames Produced (grams)	# Lots	Powder Average/ Ingot T _{Curie} (K)	Powder Average/ Ingot M _{sat.} (emu/g)
	1	Gd	268	670	490	3	289/293	256/267
3	2	$Gd_{0.91}Y_{0.09}$	258	645	512/605	4	274/274	247/228
	3	Gd _{0.3} Tb _{0.7}	235	588	759	2	250/253	267/254
	4	$Gd_{0.69}Er_{0.31}$	202	505		2	/230	/264
	5	Gd _{0.32} Dy _{0.68}	172	430		2	/214	/279
	6	Gd _{0.15} Dy _{0.85}	139		Pending	2	/192	/283
				348	Sieving			
	7	Gd _{0.27} Ho _{0.73}	100	250	350	1	172/173	306/290
	8	Gd _{0.16} Ho _{0.84}	57	143	286	1	154/153	303/297

Table reveals that magnetic properties of atomized powders have been consistent with bulk ingot measurements, indicating retained high purity.

Unexpected shift in mushy fluid (L+S) behavior of alloy on rotating disk changed predicted atomization results that required extra experimental effort/time.

Accomplishment (FY17): AMES measured key characteristics for 8 materials required for our models

EMERALD ENERGY NW

Solutions with Power and Energy

Accomplishment (FY17): Characterization Magnetic Moment (AMES)

Proudly Operated by Battelle Since 1965

Chamistr

	Layer	chemistry
	1	Gd
Saturation Magnetization	2	Gd _{0.9} Y _{0.1}
M _s measured at T = 2 K, μ_0 H = 9 T	3	Gd _{0.3} Tb _{0.7}
M _s values plug into AMRR performance model	4	Gd _{0.67} Er _{0.33}
RDA powders also being measured for comparison	5	Gd _{0.32} Dy _{0.68}
	6	Gd _{0.15} Dy _{0.85}
	7	Gd _{0.27} Ho _{0.73}
	8	GdaueHoaau

