

Electrochemical Compression

2017 DOE Hydrogen & Fuel Cells Program Annual Merit Review Meeting

Monjid Hamdan

Director of Engineering

Giner, Inc.

89 Rumford Ave. Newton, Ma. 02466 June 6th, 2017

Project ID: PD136

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: Oct. 1, 2016
- Project End: Sep. 30, 2019
- Percent Complete: 12%

Budget

- **Total Project Budget:** \$3.52MM
 - **Total Federal Share:** \$2.81MM
 - **Total Recipient Share:** \$0.71MM
 - **Total DOE Funds Spent*:** \$0.3MM

* As of 3/31/17

Technical Barriers (Advanced Compression)

B. Reliability and Costs of Gaseous Hydrogen Compression

Technical Targets: Small Compressors: Fueling Sites (~100 kg H₂/hr)¹

Characteristics	Units	2015 Status	2020 Target	Giner Status (2017)
Availability	%	70-90	85	
Compressor Specific Energy	kWh/kg	1.62 ²	1.62 ²	2.72 ³
Uninstalled Cap. Cost ²	\$	275k	170k	>450k
Annual Maintenance	% of Capital Cost	8	4	
Lifetime	Years		10	
Outlet Pressure Capability	bar	950	950	350

¹ FCTO Multi-Year Research, Development, and Demonstration Plan (2011-2020). ² 100-bar delivery/Commercial mechanical compressors are >6-8 kWh/kg (@7-bar delivery). ³2-bar delivery (100-bar expected to reduce to 1.16 kWh/kg)

Partners

- National Renewable Energy Laboratory (National Lab) Membrane/System Validation
- **Rensselaer Polytechnic Institute (Academic)**
- Gaia Energy Research Institute (Private)

- Membrane Development
- Techno-Economic Analysis

Collaborations

- **TÜV SÜD America**
- Intertek

- Codes/Stack Certification
- Codes/System Certification

GINER

Relevance

Overall Project Objectives

 Develop/demonstrate electrochemical hydrogen compressor (EHC) to address critical needs of lower-cost, higher efficiency, and improved durability

FY 2016-17 Objectives

- Fabricate hydrocarbon (HC) membranes with enhanced properties for use in EHCs
- Improve EHC water and thermal management
 - Development of Water Management Membranes (WaMM) for use in EHCs
 - □ Engineer flow distributors for high pressure operation
- Optimize stack hardware and demonstrate cell performance ≤ 0.250 V/cell at current densities ≥1,000 mA/cm²

Impact

- Low cost, reliable, high pressure hydrogen to help enable FCEV penetration
 - Compressor reliability is a major concern for enhanced use of high pressure hydrogen systems and threatens the deployment of a hydrogen infrastructure

High Pressure Stack

EHC Background

EHC: Benefits & Uses

- Solid State, No moving parts
 - Improves downtime
- No membrane degradation (no O₂)
 - Enables use of low-cost HC membranes
- Cross-cutting technology
 - □ Fuel Cells, Electrolyzers
- Alternative applications:
 - □ Hydrogen Purification
 - Hydrogen Circulation (Pump)
 - Power Generation (Reversible)
 - □ H₂ Purity (Sensor Applications)

Efficient, stable, high pressure, & high current EHC operation requires:

- Water Management
 - Difficult under varying operating parameters (P_i, P_o, T_i, Current, H₂O_d)
 - Leads to catalyst flooding or membrane dehydration
 - High electro-osmotic drag (EOD) in conventional membranes; 6X higher than can be supplied by humidification

Thermal Management

- □ Limits to operating current density
- Individual cell cooling required
- Mechanical Strength
 - □ Stack hardware, membranes, sealing

Approach: Program Overview

Safety, Cost, Certification

	Membrane	 Hydrocarbon (HC) membranes: Synthesize membranes with: Low EOD (& gas permeation) Optimize ionomer composition to achieve cell voltage of 0.25 V/cell (1,000 mA/cm²)
Wembrane	 Water management membrane (WaMM) : Provides passive water management 	
	Stack	 Design of flow distributor cell plate Provides heat removal of each individual cell Enables variable H₂ Feed (1-100 bar) Scale-up active area of stack (& membranes) Build/Demonstrate 875 bar stack operation (Yr. 2)
	System	 Build 0.5 kg-H₂/hr prototype system Lab-scale demonstration of the technology Increase TRL level

Approach: 2016-17 Tasks & Milestone Progress

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
1	Test Hardware Development	M1.1	Fabricate 50cm ² test hardware for evaluation of HC and WaMM membranes	 Designed & fabricated test hardware to accommodate distributor plate and WaMM 3 sets of hardware delivered to NREL for testing & validation of membrane samples 	100%
2	Hydrocarbon Membrane Fabrication, WaMM Fabrication	M1.2	Synthesis HC membranes with IECs in the range of 1.8–2.6 mmol/g, protonic conductivity >0.1 S/cm, and electro-osmotic requirement <50- 80% than conventional PFSA PEMs Synthesize WaMM with water flux of \geq 0.039 g/min-cm ² and conductivity \geq 1.0 S/cm membrane	 Partially fluorinated HC membranes synthesized (on-going): Conductivity: 0.106 S/cm EOD: 50% of PFSA IEC: 1.4 / 2.0 mmol/g WaMM synthesized: Water flux: ≥0.1 g/min-cm² Through-plane conductivity: > 1.0 S/cm 	60%
	Evaluate Cell Performance	M1.3	Voltage performance 250 mV @ ≥ 1,000 mA/cm ² (combined Task 1, 2, & 3)	EHC cell voltage performance @ 1,000 mA/cm ² (300 psig): • 170 mV/cell (PFSA) • 120 mV/cell (HC)	30%
3	Preliminary Stack Design	M1.4	Complete preliminary design of scaled-up stack (300 cm ²) for 875 bar operation	Initiated	5%
Go/I	No-Go Decisio	on Y1	Demonstrate EHC voltage performance of ≤ 250 mV/cell @ ≥ 1000 mA/cm ² in a 50 cm ² stack platform utilizing an advanced membrane	On track to successfully operate EHC at 350 Bar ≤ 0.250V @ ≥ 1,000 mA/cm²	

Progress- HC Membrane Development

Hydrocarbon Membranes (BPSH)

- Inexpensive starting materials
- □ Trade-off between conductivity and mechanical properties
- Reduces gas permeation by 1 order of magnitude
- Reduction in electro-osmotic drag transport

Biphenyl-based Membranes, Partially Fluorinated Hydrocarbons (BP-Ar, F4FBP-S, PBPA-S)

- □ Similar benefits as BPSH, but include:
 - Mechanical stability
 - Membrane support structures can be added for increased stability
 - Higher IEC , protonic conductivity

Comparison among hydrocarbon PEMs: BPSH-40, BP-Ar, F4FBP-S, and PBPA-S						
	BPSH-40	BP-Ar	F4FBP-S	PBPA-S		
EC (mmol/g)	1.7	1.4-2.0	up to 2.2 ^a	2.6		
Vater Uptake (wt%)	56 ^b	32	Not available	76 ^b (87 ^c)		
/I _n (kg/mol)	40–50	60–80 ^d	69.1 ^d	70.8 ^d		
/iscosity (dL/g) ^e	0.9	Not available	2.03 ^d	2.18 ^d		

^a IEC calculated based on repeating structure containing two alkyl-sulfonate chains. ^b Measured at 30 °C.

^c. Measured at 80 °C. ^d Molecular weight data from non-ionic precursor polymers, F4FBP and PBPA-Br. ^e Intrinsic viscosity.

Biphenyl-based Perfluoroalkylsulfonate & Bromoalkyl-tethered Aromatic Polymers (BP-Ar & F4FBP-S/PBPA-S)

Progress- HC Membrane Development (BP-Ar)

- Conductivity: 0.106 S/cm, (met *target* >0.100 @ 80°C)
- Dynamic mechanical analysis (DMA): High storage modulus, indicating high strength and resistance to swelling
- Electro-osmotic Drag (EOD):
 - □ **PFSA:** ranged from 0.5 to $3.9 H_2O/H^+$
 - □ **BP-Ar:** ~ 1.0 H₂O/H⁺ *WaMM requirement?* (see Slide 11)
- IEC: 1.45 mmol/g
 - Exploring increasing IEC for improved properties

Progress-WaMM Development

- WaMM successfully fabricated (active areas >200 in²)
 - □ Exhibits high mechanical integrity & flexibility
 - □ Thickness:1.25 mil (32 µm)
- Through-plane conductivity of select composite WaMMs > 1 S/cm
 - □ WaMM is anisotropic , high In-plane conductivity
 - Supports bipolar stack configurations
- Water flux: > 0.09 g/min-cm² (target > 0.039g/min-cm²)
 - Additional improvements feasible by casting thinner WaMMs

WaMM Membrane

Progress- EHC Cell Performance (PFSA)

Catalyst Optimization

- Combined optimization of Catalyst, Flow Distributor, & WaMM significantly improves EHC performance: 0.7V→0.17V/Cell (@1,000 mA/cm²)
- WaMM maintains water equilibrium in MEA and prevents drying/flooding

Progress- EHC Cell Performance (HC vs. PFSA)

HC membrane (with low EOD) and/or WaMM can significantly improve water management in EHC.

We have multiple choices!

Progress- EHC Cell Performance (350 bar Operation)

- 350 bar stack hardware modified for EHC operation
- Initial run operated at >5,000 psi (350 bar) w/PFSA & WaMM
 - Performance 0.25V @ ~890 mA/cm²
- Further improvements:
 - HC membranes expected to improve performance significantly with lower EOD
 - Further optimization of WaMM to provide additional water
 - □ Increasing inlet pressure to 100 bar will reduce Nernst losses

Progress - EHC Performance Projections

PFSA vs. HC Membrane

Combined effect of iR-losses, Nernstian Penalty, Catalytic Activity, Ionic conductivity, and Back diffusion

 Increased power consumption at high operating pressure (back diffusion)

12,688 psi

(H70 Refueling)

10

Progress-EHC Stack & System Design & Fabrication

0

12,688 psi

(875 bar)

5,000 psi (350 bar) Modified stack to accommodate Distributor and WaMM. Supported membranes required

θ

Evaluation of high pressure components, Flow distributors & internal cell components

Catalyst, Membrane & Cell-Component, Testing & Validation

875 bar Stack

- Stack Design Initiated
- Designed for proof pressure of 20,000 psi (~1,400 bar) - required for approval
- Incorporates new distributor plates and WaMM
- Evaluate at 350 bar, followed by 875 bar operation
- Scale-up hardware to larger active areas

System

- Increase TRL from 3 to 5 (goal is commercialization of the technology)
 - Certification Intertek
 - CDR & HazOp/Stack & System
- Designing system to meet Safety & Regulatory Codes
 - Design based on mobile refueling applications, designed to meet safety and regulatory codes as listed by UL, NFPA(2 &70), SAE, ASME, and NHA
 - System design includes multiple compartments to separate hazard zones
 – simplifies certification

Projected Compression Cost

H ₂ Compression Cost Contribution	Current Status (\$/kg)
Capital Costs ¹	0.176
Feedstock Costs ²	0.313 (PFSA)
Fixed O&M	0.004
Variable Costs	0.001
Total Cost (\$/kg) ³	0.494

 110 year lifetime, 2Based on electrical cost of \$0.057/kWh, 3Design Capacity: 100 kg-H_2/hr. Assumes large scale production.

Targets: \$3.4k/year (O&M) and capital cost of \$170k per compressor

- System Economics: determined using current Giner PEM-based electrolyzer system cost models
 - □ Feedstock:
 - Efficiency Range (kWh_e/kg-H₂):
 - 2.7 ± 1.2 (HC)
 - 5.5 ± 1.2 (PFSA)
 - Capital Cost: Increasing Active Area & Operating Current Density reduces CapEx significantly
 - Projected Operating Life: The unit will be designed to operate for a term of 10 years or more (> 20 years expected)
 - Membranes are not expected to degrade due to lack of O₂ in system

Collaborations

Giner, Inc. -Prime	Industry	Stack and system engineering, development, and operation. Fabrication and optimization of catalyst and membrane electrode assemblies. WaMM development and optimization. Testing & validation.
National Renewable Energy Laboratory -Subcontractor	National Lab	Coordinate stack testing and optimization studies of membranes, cell components & materials. Membrane and cell component validation. Operation of EHC stacks and scaled-up EHCs systems at high hydrogen pressure that are key to performing system diagnostics and validation.
Rensselaer Polytechnic Institute -Subcontractor	Academia	Development of mechanically-stable hydrocarbon- based PEMs which serve as a key material in this project.
Gaia Energy Research Institute LLC -Subcontractor	Private Business	EHC stack cost analysis and system-level analysis. Developing EHC cost estimates, techno-economic analysis (TEA), and life cycle assessment (LCA).

Summary

- Membrane
 - WaMM: Successfully developed/fabricated flexible WaMM compatible with high pressure operation
 - Significantly improves water management, stabilizes cell voltage
 - □ HC membrane: Achieved significant improvement in membrane performance
 - Cell voltage improvement to 0.110V/cell
 - □ Stack Efficiencies to 2.7 kWh_e/kg-H₂ (@ 1,000 mA/cm², 2 bar feed)
 - 100 bar feed expected to reduce to <1.6 kWh_e/kg-H₂
 - Highest Efficiency for EHC operating at 5,000 psi

Stack Hardware Development:

- Fabrication of test hardware (for validation of membrane and cell components) completed
- Developed Flow Distributor to maintain temperature in each individual cell
- □ Combined WaMM and Flow Distributor enables significant:
 - Cell voltage improvement: $0.7V/cell \rightarrow 0.110V/cell$
 - Stable EHC operation at elevated current density operation
- □ Initiated operation at 5,000 psi (350 bar), demonstrated stable performance
- 875 bar stack design initiated

Future Plans & Challenges (FY2017-18)

Future Plans*

- <u>Membrane</u>: Complete investigation on HC membranes
 - □ Conduct HC membrane evaluations at 5,000 psi (350 bar)
 - Conduct 1,000 hour duration test
- Stack: Design, fabricate, and test high-pressure 12,688 psi (875 bar) stack hardware
- System: Initiate assembly of porotype system design
 - □ Selection and procurement of Class 1, Div. 2, Group B components

Future Challenges

- Increase stack active-area to 300 cm² or larger
 - □ Also requires scale-up for HC membranes
- Increased operating pressure
 - Maintaining seals of stacks at operating pressure of 12,688 psi or higher
- Reduce Stack Costs
 - Unitize cell components (reducing parts/cell)
 - Combine cell components at the production level
 - □ Combine Flow-Distributor and WaMM compartment into single component
 - Investigate techniques to reduce fabrication costs
 - Chemical etching and machining is current solution. Possibility of stamping components
- Embrittlement of cell components
- Effect of H₂ impurities