

Metal Hydride Compression

PI: Terry Johnson

Sandia National Laboratories

Team: Robert Bowman, Barton Smith, Lawrence Anovitz

Oak Ridge National Laboratory

Craig Jensen

Hawaii Hydrogen Carriers, LLC

June 6, 2017

Project ID PD138

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Overview

Timeline

- Project Start Date: 10/01/16
- Project End Date: 09/30/19

Budget

- Total Project Budget: \$1.8M
 - Total Recipient Share: \$180K
 - Total Federal Share: \$1.62M
 - Total DOE Funds Spent*: \$154K

* As of 3/31/17

Barriers – Hydrogen Delivery

B. Reliability and Costs of Gaseous Hydrogen Compression

Partners

- Lead: Sandia National Laboratories
- Hawaii Hydrogen Carriers, LLC
- Oak Ridge National Laboratory

Relevance: H₂ compressors dominate station costs and downtime

Compressors represent 31% of total station cost

Compressors are 2nd largest contributors to maintenance hours

70 MPa station cost distribution

Assuming gaseous tube trailer delivery Source: Miller, 2016, DOE Annual Merit Review: 3 https://www.hydrogen.energy.gov/pdfs/review16/pd000_miller_ Source: NREL Composite Data Products, 2016 http://www.nrel.gov/hydrogen/images/cdp-infr-21.jpg

Relevance: Metal hydride compression can improve reliability of 700 bar refueling

Main Objective – Demonstrate a two-stage metal hydride compressor with a feed pressure of ~50 bar delivering high purity H_2 gas at 1 kg H_2 /hr at an outlet pressure of 875 bar.

- Demonstrate an increase in the TRL of this technology from 2 to 5
- Enable the development of a comprehensive cost analysis for a production system scaled to 100 kg H2/hr
- FY17 Objectives:
 - Demonstrate through laboratory characterization two metal hydrides for each stage that meet system level requirements
 - Demonstrate compressor feasibility through analysis using a systemlevel compressor model
 - Down select compressor bed designs for both stages based on trade studies

Approach: Two-stage Metal Hydride Compressor

- Two-stage metal hydride compressor
 - Feed pressure 50-100 bar
 - Outlet pressure ≥ 875 bar
 - High purity H_2 gas
- Optimized material for each stage
 - 2-3 candidates per stage will be characterized (thermodynamics, kinetics, and hydrogen capacities) to determine optimum design
- Each stage consists of multiple (2-3) hydride beds
 - synchronized hydrogenation & dehydrogenation cycles
 - size and number of beds will be optimized for continuous pumping at desired pressure with minimal heat input

Hydrogen and Fuel Cells Program

Approach: Trade study to determine bed designs including heat transfer enhancement

External heating/cooling ENG additive for heat transfer

Internal heating/cooling Al foam for heat transfer

Hydrogen and Fuel Cells Program

Approach: Dynamic system-level model developed for

Check valves only allow flow in one direction

Flow driven by temperature-induced pressure differences

Approach: Status of Milestones

Туре	Milestone Number	Milestone Description	Scheduled Date	Status
Milestone	2.1	At least two candidate alloys identified for both LP and HP		100%
Milestone	2.2	At least two LP and HP materials fully characterized		10% (Delayed)
Milestone	3.2.1	Desired effective thermal conductivity determined along with additive type and amount.	7/17	0%
Go/No-Go Decision Point	Go/No-Go #1	Laboratory characterization demonstrates the ability of two metal hydride alloys to compress hydrogen from 50 bar to 875 bar, and engineering simulations using the system-level compressor model reasonably predict that the compressor can achieve an energy consumption of < 4.0 kWh/kg-H2 under 50-875 bar operation relying on heat from co-located equipment.	10/17	0%
Milestone	6.1	Detailed design complete	1/18	0%
Milestone	7.1	Receipt of complete lots of both the LP and HP alloys by 17th month to allow time for processing into powders and confirmation of hydrogen absorption/desorption parameters while the bed assemblies are being fabricated.	3/18	0%
Milestone	7.2	Completed assembly of 2-stage compressor with at least two each LP and HP compressor beds	7/18	0%
Go/No-Go Decision Point	Go/No-Go #2	One LP and one HP hydride must show degradation less than 20% of initial capacity over ~1000 cycles or regeneration potential.	8/18	0%

Accomplishments: Dynamic system model used to predict performance for baseline two-stage design

Baseline Configuration:

- 25 kg of LP hydride (TiMn_{1.66}Vf_{0.34})
- 21.7 kg of HP hydride (TiCrMn_{0.7}Fe_{0.2}V_{0.1})
- 12 minute half cycles
- Heating/cooling of beds with heat transfer fluid
 - Cold loop temperature set to 10 °C
 - Hot loop temperature set to 177 °C

Results:

- Utilization = 49.5% for all beds
 - $Utilization = \frac{Hydrogen\ delivered}{Storage\ capacity}$
- 1.07 kg/hr average flow rate
- Energy usage for heating 12.5 kWh/kg H₂
- Model used to characterize design space
 - Alloys, cycle times, bed geometry, feed pressure

316L SST tubes 2.0" OD with 0.04" wall Tube spacing 0.157" 3X4 array of 10" long tubes

Accomplishments: Several approaches identified to achieve energy efficiency/cost targets

- Heat recuperator design could reduce the sensible heat requirement of the system by ~40% bringing required heat down to ~10 kWh/kg
- Waste heat utilization:
 - Coupling to an SMR system is possible (heat available at appropriate temperature), but not likely in forecourt
 - Waste-to-energy systems identified with available, high quality heat
 - BESI system at HCATT has 190 kW of steam at ~180 °C and cooling water
- Low cost heat:
 - Natural gas burner can provide 10 kWh/kg of heat for about \$.25/kg
- Heat pump options:
 - VCC operating between 25 °C and 125 °C
 - Using R21 gives COP = 2.7 resulting in 3.7 kWh/kg
 - Using methanol gives a COP of 3.2 resulting in 3.1 kWh/kg
 - A natural gas-fired AHP system might produce a COP of ~1.4 with these temperatures requiring 7.1 kWh/kg of heat or \$.18/kg

Accomplishments: Five candidate alloys identified for each compressor stage; paired down to two each

- Alloy selection based on thermodynamics reported in literature
 - Minimal hysteresis and flat plateaus
 - Promising pressure at reasonable temperature
- Two high-pressure and low-pressure AB₂ alloys selected for PCT characterization

High Pressure Candidates

- 1. $\text{TiCr}_{1.6}\text{Mn}_{0.2}$
- 2. TiCr_{1.8}
- **3.** Ti_{0.95}Zr_{0.05}Cr_{1.20}Mn_{0.75}V_{0.05}
- 4. (Ti_{0.97}Zr_{0.03})_{1.1}Cr_{1.6}Mn_{0.4}
- **5.** TiCrMn_{0.7}Fe_{0.2}V_{0.1}

Low Pressure Candidates 1. MmNi_{4.7}Al_{0.3}

- 2. TiMn_{1.66}Vf_{0.34}
- **3.** Zr_{0.8}Ti_{0.2}FeNi_{0.8}V_{0.2}
- 4. TiCr_{1.6}Mn_{0.2}
- 5. Ti_{0.955}Zr_{0.045}Mn_{1.52}V_{0.43}Fe_{0.12}Al_{0.03} (Hydralloy C5)

G. Capurso, et al., Appl. Phys. A **122** (2016) 236

Accomplishments: Vendors engaged to supply alloys for low and high pressure beds

- Vendors contacted: Eutectix, Ergenics, GfE, Ames Laboratory, Sigma Aldrich, Japan Metals and Chemicals (JMC), Japan Steel Works (JSW)
- Sandia owns ~100kg of Hydralloy C5 (Ti_{0.955}Zr_{0.045}Mn_{1.52}V_{0.43}Fe_{0.12}Al_{0.03})
 - Will be characterized for possible LP alloy
- Small samples of LP alloys obtained from GfE and Sigma Aldrich
 - But, similar alloys to Hydralloy C5
- Ames able to produce LP and HP alloys: small batches, expensive
- JMC able to produce LP and HP alloys in large quantities for less cost
 - Procure test quantities (i.e., ~ 50 grams) of three AB₂ alloys
 - 1. $Zr_{0.8}Ti_{0.2}Fe_{1.0}Ni_{0.8}V_{0.2}$ (Low-Pressure)
 - 2. $Ti_{0.95}Zr_{0.05}Cr_{1.20}Mn_{0.75}V_{0.05}$ (High-Pressure)
 - 3. $Ti_{1.0}Cr_{1.0}Mn_{0.7}Fe_{0.2}V_{0.1}$ (High-Pressure)

Accomplishments: High pressure cycling apparatus designed; assembly and calibration in progress

- High-pressure Sievert's system design completed in December
 - Incorporated ideas/practices from JPL hydride temperature cycling station and SNL high-pressure station
 - Used existing infrastructure at ORNL as much as possible
 - Focus on minimizing internal volume to enable measurements of small quantities of hydride alloys
- Safety review completed and design approved in January
- Assembly and system testing began in February
- PCT experiments will determine if
 - 1. Desorption pressure > 875 bar at T < 150 $^{\circ}$ C
 - 2. Alloys properties are stable over ~1000 cycles
- First measurements of high-pressure hydride to be completed in June
- Characterization of high-pressure hydrides to be completed in August

Accomplishments: High pressure cycling apparatus design minimizes internal volume

Accomplishments: PCT system set to characterize low pressure alloys

Isotherms of a minimum of 2 candidate AB2 hydrides will be obtained at 25, 70, 100 and 150 °C by June 1, 2017.

Suzuki Shokan 2 channel thermo-volumetric analyzer (Sievert's type apparatus aka PCT) with medium (≥150 atm) pressure capability.

Responses to Previous Year Reviewer's Comments

This project was not reviewed last year

Collaborations: Experienced team well-suited for executing this project plan

- Sandia National Laboratories
 - Project lead/project management
 - Lead compressor bed and system design (system model, pressure vessel design, heat transfer enhancement)
 - Low pressure hydride degradation assessment
 - Experimental evaluation of the prototype compressor
- Oak Ridge National Laboratory
 - Hydride identification
 - High pressure hydride characterization and degradation assessment
 - Support SNL in developing compressor bed and system designs
- Hawaii Hydrogen Carriers, LLC
 - Low pressure hydride characterization
 - Hydride sourcing and procurement
 - Fabrication of the prototype 2-stage compressor
 - Cost analysis of the commercial system concept.

Remaining Challenges and Barriers

- Challenge: Achieve an energy consumption of < 2.0 kWh/kgH₂ or cost less than \$0.22/kgH₂
 - Metal hydride thermodynamics require 6-7 kWh/kgH₂ minimum for a two-stage compressor; sensible heating requirements and losses push this to ~12 kWh/kgH₂
 - 12 kWh/kgH₂ of heat provided by a natural gas combustion unit (assuming natural gas costs \$0.065/mm-btu, and burners are about 85% efficient) is about \$.30/kg
 - Must show potential for waste heat utilization and/or lower cost heat
- Challenge: Identifying two metal hydride alloys to compress hydrogen from 100 bar to 875 bar within reasonable operating temperatures with degradation less than 20% of initial capacity over ~1000 cycles or regeneration potential
- Challenge: Bed design (especially to >875 bar) that maximizes energy efficiency by minimizing sensible heating, thermal losses, and void volume while also maximizing H₂ flow rate

Proposed Future Work

Remainder of FY17

- Characterize at least two alloys for each stage
 - Produce absorption and desorption isotherms
 - Demonstrate system requirements can be met by at least one alloy for each stage
- Perform trade studies on design configurations for the prototype LP & HP compressor beds and down select
- Complete feasibility assessment using system-level compressor model
 - Demonstrate performance with measured properties and final bed designs
 - Demonstrate path to energy and/or cost targets

FY18

- Perform accelerated cycling tests (~1000 cycles) on hydrides
 - determine degradation rate
 - assess regeneration potential.
- Complete fabrication and assembly drawings of compressor beds
- Procure hydride alloys and fabricate bed components
- Process hydrides, load compressor bed, perform leak and pressure tests then integrate into prototype compressor.
- Configure test facility to enable performance testing.

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

Potential Follow-on Prototype Demonstration

 Discussions with HCATT/BESI on integration of the prototype system into BESI waste-to-energy system in Peal Harbor, HI or University Park, IL

Tech-to-Market Plan

- Two-year developmental phase
 - HHC will team with an electrolyzer, fueling station supplier, or reformer company to produce a scaled-up, commercial version of the compressor
 - Units will be marketed as upgrades for current hydrogen generation systems, or for localized H₂ production via renewable sources such as solar or wind for residential, businesses or small utility fleets.
- Final two-year phase
 - Further scale-up effort for the development and marketing of larger hydride compressors with output of 10 kg H_2 /hr to 100 kg H_2 /hr for hydrogen fueling stations

H2FCHydrogen and Fuel Cells Program

Summary

- A metal hydride compressor has potentially significant advantages over current technology
 - Greatly reduced operating costs
 - Requires little or no maintenance
 - Can be powered by waste heat rather than electricity
 - More Reliable: Simple design and operation with no moving parts
 - High purity H₂ delivery: Oil free operation
- Candidate alloys for low and high pressure stages are readily available in quantities required for a prototype system
- System-level analysis of a baseline design demonstrates feasibility of 50 - 875 bar H₂ compression and delivery at reasonably achievable temperatures
- Metal hydride compressors can be energy efficient by taking advantage of waste heat sources or using heat pumps; inexpensive to operate if low cost heat is available

TECHNICAL BACK-UP SLIDES

	Group (repre- sentative)	Structure of parent alloy	Structure of hydride	Δ <i>V</i> / <i>V</i> ₀ [%]
	A (BCC-V)		V	35.5 (V→VH₂) 30.9 (V₂H→VH₂)
	B (LaNi ₅)		La	20.4 (LaNi₅→LaNi₅H ₆)
	C (TiMn₂)		MnH	19.6 (TiMn₂→TiMn₂H _{2.5})
	D (TiFe)		Fe	18.3 (TiFe→TiFeH₂)

AB₅ and AB₂ most commonly used

HFCHydrogen and Fuel Cells Program

Pressure-Composition-Temperature (PCT) Isotherms for a "Prototype" Metal Hydride

- where α- & β-phases co-exist, a plateau occurs
- plateau pressure is temperature dependent

Estimates of compression ratio must account for real metal hydride properties

Pressure – composition isotherms at $T_L=20 \text{ °C}$ (1) and $T_H=150 \text{ °C}$ (2) for $H - La_{0.85}Ce_{0.15}Ni_5$ system

(a) –idealized (flat plateaus, desorption isotherms)

M.V. Lototskyy, et al., IJHE 39 (2014) 5818

H,FCHydrogen and Fuel Cells Program

b) – real (sloping plateaus, absorption isotherm at T_L , desorption isotherm at T_H).

Metal hydride compressors have advantages over mechanical compression, but other challenges

Advantages

- Simple design and operation
- Absence of moving parts
- Oil-free
- Compact
- Safe and reliable
- Able to utilize waste industrial heat
 - Dramatic decreases in operational costs
 - Advantage with on-site generation

Challenges

- Achieving required pressure range within reasonable operating temperatures
- Capacity degradation over the compressor lifetime
- Hysteresis effects
- Resistance to impurities
- Efficiency
- Minimizing effect of vessel heat capacity

Fig. 6 – Schematic diagram of hydrogen compression system.

H_FCHydrogen and Fuel Cells Program

- 1st stage Alloy: Ti_{0.95}Zr_{0.05}Cr_{0.8}Mn_{0.8}V_{0.2}Ni_{0.2}
- 2nd stage Alloy: Ti_{0.8}Zr_{0.2}Cr_{0.95}Fe_{0.95}V_{0.1}
- Circulated cold (~300 K) and hot (~423 K) oil in beds
- Periodic Pressurization steps and not continuous supply of 700 bar H₂ gas