

Hydrogen Fueling Infrastructure Research and Station Technology

Dispenser Reliability 2017 DOE Annual Merit Review

Presenter: Mike Peters (PI) NREL H2FIRST Lead: Chris Ainscough

National Renewable Energy Laboratory June 8, 2017

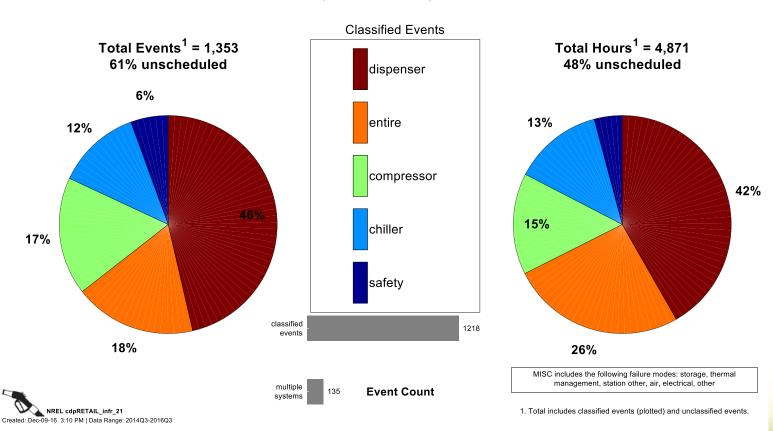
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Sandia National Laboratories

Project ID # PD140

Overview

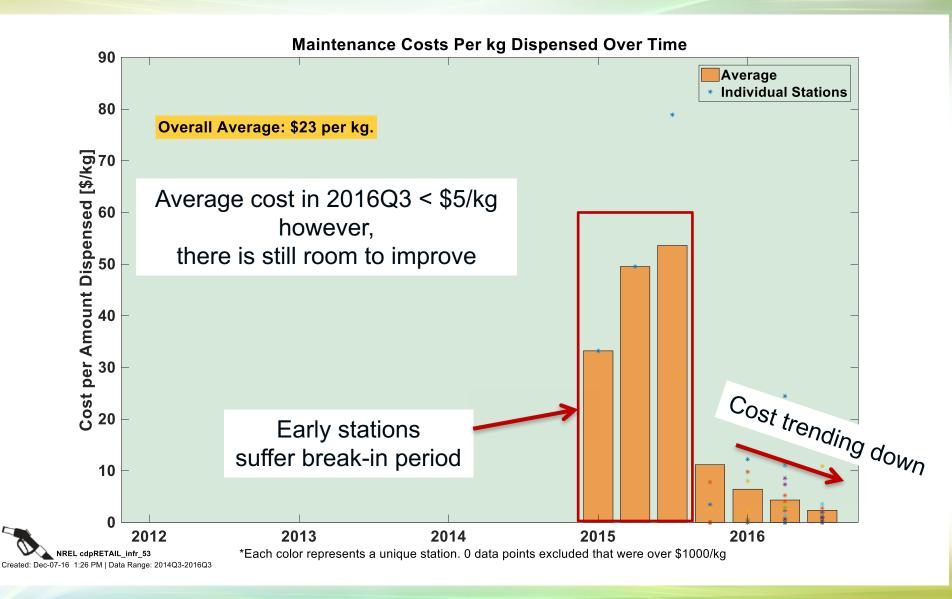
T I M E L I N E	 Start date: 10/1/2016 End date: 09/30/2017* * Project continuation and direction determined annually by DOE 	B A R R I E R S	 Multiyear RD&D Barriers Technology Validation Barriers D. Lack of Hydrogen Refueling Infrastructure Performance and Availability Data E. Codes and Standards - Validation projects will be closely coordinated with Safety, Codes and Standards
B U D G E T	 Project funding FY17: \$1,300K 	P A R T N E R S	 NREL Chris Ainscough, Mike Peters, Ahmad Mayyas, Sam Sprik, Josh Martin, Petr Sindler, Kevin Hartmann, Erin Winkler, Danny Terlip, Rob Burgess, Owen Smith, Kevin Harrison SNL (Sandia National Laboratory) Joe Pratt, Nalini Menon, Ethan Hecht GTI Tony Lindsay, Ted Barnes, Brian Weeks CSA Group Livio Gambone


2

Relevance: #1 in Downtime

Dispensers are the top cause of maintenance events and downtime at retail hydrogen stations

Maintenance by Equipment Type - Retail Stations


Sandia National Laboratories

3

Relevance: Station O&M Cost

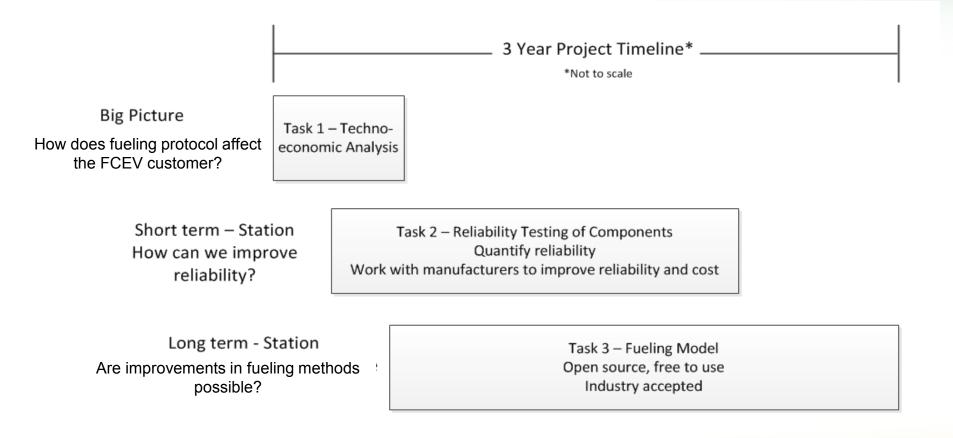
4

Relevance: Striking the Right Balance

Cost

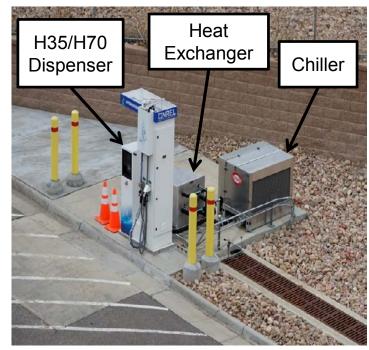
- Capital
- Operation and maintenance

Performance


- 3 5 minute fills
- High State of Charge (> 95%)
- Cost of fuel to customer
- 99% station reliability

5

Approach: Project Tasks


6

Approach: Task 1 – Techno-economic Analysis

- Explore cost, to the fuel cell vehicle customer, of changing the pre-chilled hydrogen temperature
- Use fill data from NREL's station to make a regression model to predict cost savings
- Main driver of pre-cooled cost is the chiller/heat exchanger capital cost and O&M
- Expected component reliability differences between operating temperatures are *not* added into this analysis
 Sandia National Laboratories

8

Approach: Task 1 - TEA

- Uses NREL's station data as base for regression analysis around chiller/heat exchanger capital and O&M cost
 - A variety of ambient conditions in Golden, CO gives the data a wide range of differential temperatures between cooling block and ambient
- Cooling requirements were split into two categories: filling and idle
- Cost was normalized to \$/year to **FCEV** customer

	2017 Honda Clarity			Fuel Cell			2017 Toyota Mirai			
	T THE REAL	8								
	Fuel Economy and Related Estimates									
Fuel Economy (mi/kg) 3	67 comb	68 city	66 hwy	49 comb	48 city	50 hwy	66 comb	66 city	66 hwy	
Range (miles)		366			265			312		
Annual Fuel Cost *	\$1,250			\$1,700			\$1,250			
	Vehicle Characteristics									
Vehicle Class	Midsize Car			Small SUV			Subcompact Car			
Motor	Select dealers in		AC Induction (100 kW) 180 V Lithium Ion Select dealers in California (lease only)			AC Induction (56 kW) 245 V NiMH Select dealers in California & Hawaii (sale or lease)				
Battery										
Availability										

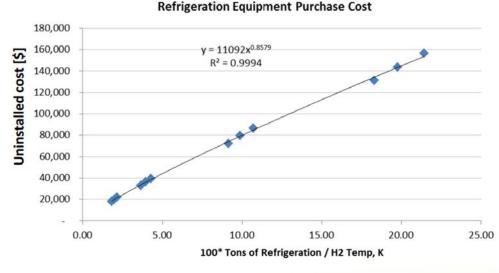
2017 Huundai Tuccon

* Annual fuel cost calculated assuming a hydrogen cost of \$5.55/kg, 15,000 annual miles of travel, and 55% city and 45% highway driving

Hydrogen Fueling Infrastructure Research Station Technology

2017 Toyota Mira

Approach: Task 1 - TEA



Capital Cost

- Take maximum of peak power between idle and filling case and add design factor of 1.5
- Use previous analysis from ANL to predict capital cost of equipment

O&M Cost

- Look at station utilization from 0 - 100% and weigh idle versus filling energy consumed
- 180 kg/day station example
- Cost of electricity: \$0.175/kWh
- Bookend cost of H2: \$5.55/kg and \$12/kg

Source: A. Elgowainy, K. Reddi, and D. Brown. "Analysis of Incremental Fueling Pressure Cost." DOE Annual Merit Review. Washington, D.C., June 17, 2014

9

Approach: Task 1 - TEA

Filling case

- Input: dispensed amount (kg), differential temperature between ambient and cooling block (°C), restoration time (min)
- Output: Peak power (kW) for capital cost, Energy per fill (kWh)

Idle case

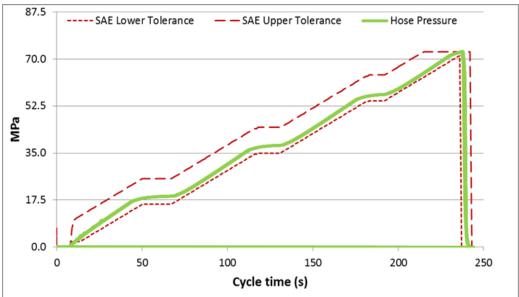
- Input: differential temperature between ambient and cooling block (°C)
- Output: Peak power (kW) for capital cost, Energy per fill (kWh) Energy (kWh)
- Kilograms dispensed is dominant factor in the energy equation for filling case

Sizing (kW)

• Filling case dictates maximum power output needed to get to chiller/heat exchanger capital cost

Approach: Task 2 – Component Testing

- Literature review on material testing of hydrogen components looking at temperature effects of hydrogen components
- Highly accelerated life testing of hydrogen components downstream of heat exchanger
- Work with component manufacturers to improve hydrogen component reliability
- Measure reliability differences of hydrogen components when exposed to different temperatures (-40°C, -20°C, 0°C, Ambient)
- Perform material analysis pre and post exposure to hydrogen

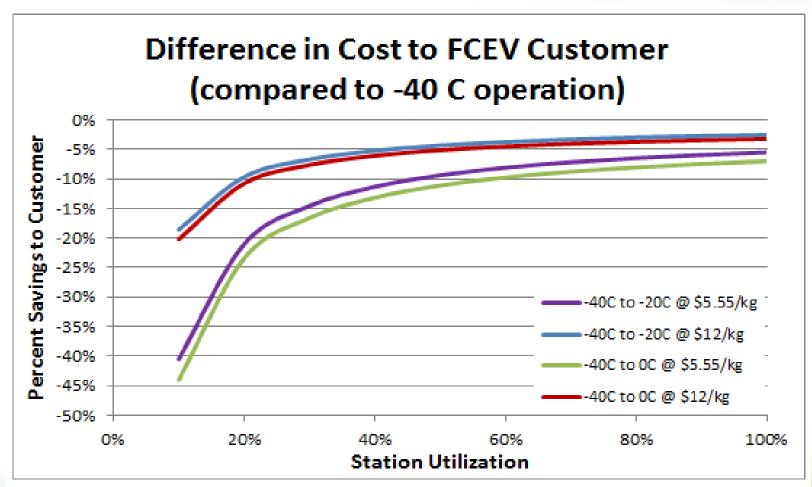


Approach: Task 2 - Component Testing

Design of Experiment

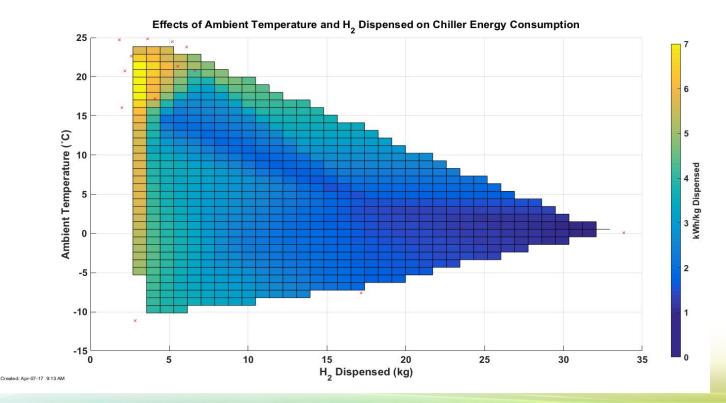
- 4 different levels of temperature: -40°C, -20°C, 0°C, ambient
- Testing 11 components per level -> 44 + 1 for material testing
- Pressure ramp rates and flow rates similar to J2601
- Pressure ramp rates 15 –
 25 MPa/min
- Flow rates 2 3 kg/min
- Expose components to thermal shock – i.e., reach
 -33°C within 30 seconds

Approach: Task 3 – Fueling Model


- Open source, free to use hydrogen fueling model that will be accepted by the codes and standards community and other key stakeholders
- Model spans from station to vehicle tanks
- Leverage existing fueling models to make one open source, free to use model to spur innovation
- Allows entity with idea for new protocol to test the protocol and provide data before approaching appropriate C&S committee

Accomplishment: Task 1 - TEA

Reducing pre-cooling temperature results in significant reductions in H_2 cost.

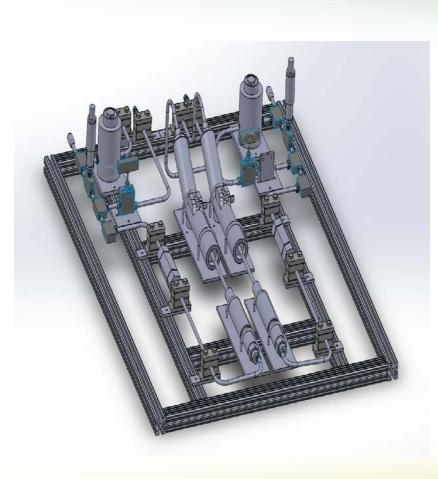


Accomplishment: Task 1 - TEA

- Cost savings higher at low utilization stations due to idle energy requirements from chillers
- TEA showed significant cost savings in capital and O&M from chiller/heat exchanger alone

Literature search

- No available data that can be leveraged to reduce the planned testing scope of this project
- Some test campaigns on performance of piping components at the pressures and temperature in a fueling dispenser
 - Available information is qualitative only or,
 - Result of specific qualification tests do not assess effects other than pass/fail
- Planned component testing work will have a high impact on component selection and design, fueling method evaluation, and dispenser reliability



17 Sandia National Laboratories

Accomplishment: Task 2 - Component Testing

- Building prototype device to ensure temperature, pressure, and flow rates can be achieved on multiple "dispenser" systems
- Components in scope:
 - Normally open valves (control valves), normally closed valve (control valve), Filters, Nozzles, Receptacles, Breakaways, Fittings

Component Manufacturers

- 45 components total is very expensive, i.e., 45 nozzles, 45 breakaways (all per manufacturer)
- Have talked with multiple component manufacturers about testing

Industry Expert Panel

- Tracks progress and provides feedback
 - Current participants: Air Liquide, Air Products, CaFCP, FastTech Inc., Ford, Honda, Linde, Shell, ZCES

Future Work:

• Task 1 – TEA

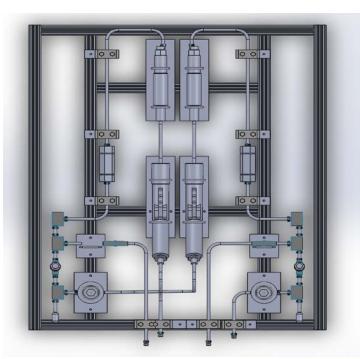
- Complete 3/31/17

Task 2 – Component Testing

- Finalize selection of component manufacturers 5/31/17
- Begin flow testing 9/1/17
- Begin material testing on components 9/1/17

• Task 3 – Fueling Model

- Document detailing the modeling inputs/outputs 3/31/18
- Preliminary station-side model 6/30/18
- Vehicle complete vehicle-side model to NREL 3/31/19



Challenges and Barriers:

Cost Share

• Need to get in-kind, discounts, or cost share of components to be able to test multiple manufacturers

Component Testing

• Working with component manufactures should lead to new products or different designs

Fueling Model

- Gain acceptance from C&S committees and industry for future use
 - SAE J2601 committee needs to be engaged early

Response to Reviewers Comments:

This project was not reviewed last year.

Summary:

Relevance:

- Dispensers are top cause of maintenance events and labor time
- O&M cost at stations has room for improvement
- Balance between station cost and performance needs to be found

Approach:

- Task 1 Techno-economic analysis
- Task 2 Component Testing
- Task 3 Fueling Model

Technical Accomplishments:

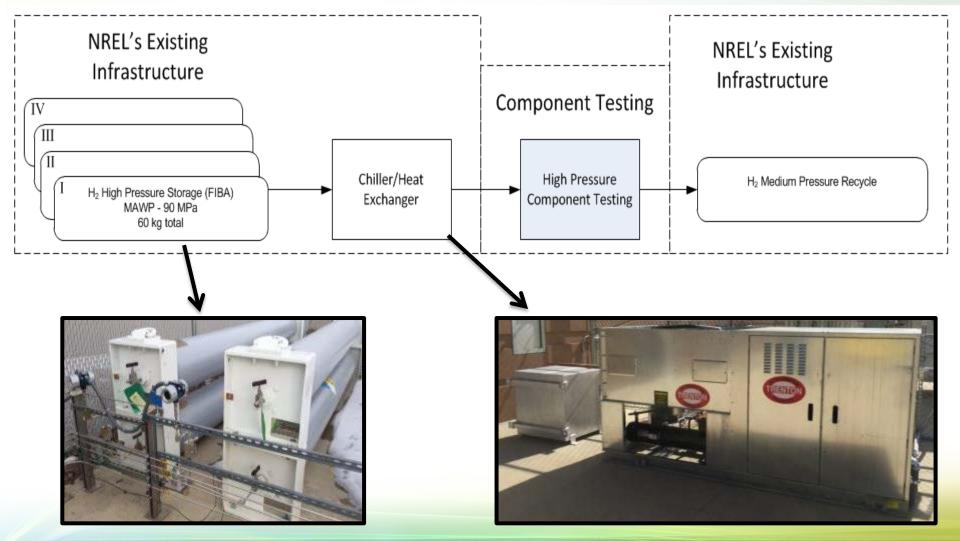
- Task 1 TEA
 - Showed significant cost savings to FCEV customer with capital and O&M improvements to chiller/heat exchanger
 - Cost savings are higher at less utilized stations due to idle operation of chiller
- Task 2 Component testing
 - Building prototype device

Collaborations:

- Project partners: SNL, GTI, CSA
- Industry expert panel: Air Liquide, Air Products, CaFCP, Fasttech Inc., Ford, Honda, Linde, Shell, ZCES

Proposed Future Research:

- Task 2 Component Testing
 - Finalize selection of component manufacturers 5/31/17
 - Begin flow testing 9/1/17
 - Begin material testing on components 9/1/17
- Task 3 Fueling Model
 - Document detailing the modeling inputs/outputs 3/31/18
 - Preliminary station-side model 6/30/18
 - Vehicle complete vehicle-side model to NREL 3/31/19


TECHNICAL BACKUP SLIDES

Approach: Task 2 - Component Testing

Accomplishment: Task 1 – TEA Regression Equations

Cooling Energy, Filling (kWh) = $0.0911 * \Delta T +$ $0.052 * t_{restoration} +$ $0.6475 * kg \ dispensed - 6.266$ $R^2 = 0.87$ Adjusted $R^2 = 0.85$

Cooling Energy, Idle (kWh) = 0.68649 * $\Delta T - 7.1742$ $R^2 = 0.76$ Adjusted $R^2 = 0.76$

Task 2 – Component Testing Material Testing

Polymeric Components:

- Evaluation of changes in glass transition temperature and moduli (DMTA -Dynamic Mechanical and Thermal Analysis)
- Mass loss effect (TGA Thermogravimetric Analysis)
- Density changes for exposed and non-exposed components (ASTM D792-13)
- Changes in degree of crystallinity for semi-crystalline polymers (DSC -Differential Scanning Calorimetry and XRD - X-Ray Diffraction)
- Optical imaging (Micro CT Computerized Tomography) and microscopy (TEM Transmission Electron Microscopy) for bulk and surface defects
- Changes in molecular weight of polymers (GPC Gel Permeation Chromatography) before and after testing

Elastomeric Components:

- Changes in compression set properties (ASTM D 395 Method B)
- Microscopic techniques (TEM) will be used to characterize possible damage such as shredding or tearing due to rapid gas decompression effects

