

2017 DOE H₂ and Fuel Cell Annual Merit Review Meeting

High Temperature Alkaline Water Electrolysis

<u>Hui Xu (</u>PI) and Kailash Patil Giner Inc. Newton, MA

June 7, 2017

Project # PD 143

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project Start Date: January 1, 2017
- Project End Date: December 31, 2020

Budget

- Overall \$ 1,722,885
 - DOE share \$ 1,375,123
 - Contractors share \$ 347,762
 - Spent \$ 60,363 (as of April 30, 2017)

Giner Researchers

Kailash Patil and Winfield Greene

Collaborator

Zircar Zirconia, Inc. (Vendor)

Barriers Addressed for HTWE

- Operating cost: prohibitive electricity consumption for water electrolysis
- Capital cost: associated with PGM or expensive high temperature materials

Technical Targets

- Composite electrolyte OH⁻ conductivity
 > 0.3 S/cm in temperature of 350 to 550 °C
- Per-cell area-specific resistance (ASR) of ≤ 0.2 Ohm-cm² at 350 to 550 °C using a membrane thickness of 200 μm.
- Stack electrical efficiency > 90% LHV H_2 with current density at 1.2 A/cm²

High Temperature Alkaline Water Electrolysis

DOE: Distributed Forecourt Water Electrolysis Hydrogen Production

Characteristics	Units	2011 Status	2015 Target	2020 Target
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.20 ^d	3.90 ^d	2.30 ^d
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f
System Energy Efficiency ^g	% (LHV)	67	72	75
System Energy Eniciency	kWh/kg	50	46	44
Stack Energy Efficiency h	% (LHV)	74	76	77
Stack Energy Efficiency	kWh/kg	45	44	43
Electricity Price	\$/kWh	From AEO 2009 ⁱ	From AEO 2009 ⁱ	0.037 ^j

Water Electrolysis Cost

Anthony et al, Hydrogen Energy Challenges and Prospects (RSC Energy Series), DOI:10.1039/9781847558022 (2008)

- Feedstock costs (electricity) consists of 50% of total cost: energy costs of \$3.09/kg H₂, 2x higher vs. DOE 2020 total cost target, \$1.60/kg H₂
- High-temperature electrolysis offer the advantage of lower energy requirements due to both higher kinetics and greatly reduced equilibrium voltages

Technical Approaches

Major Advantages

- Flexible temperaturesintermediate T compared to PEM and SO system)
- Less expensive materials

Key to Success

- Porous metal oxide matrices resistant to molten hydroxides
- Microstructures of the porous oxide matrices determine whether they can successfully retain molten hydroxides
 - thickness, porosity and pore structures

Tasks and Performance of Schedule

		Period 1			Period 2								
ID	Task Name	Q1	Q2	Q3	Q4	Q 5	Q6	Q 7	Q8	Q9	Q10	Q11	Q12
1	Task 1: Develop alumina and zirconia matrices												
2	1.1 Develop LiAlO ₂ Matrix			Ì	-								
3	1.2 Prepare ZrO2 and YSZ Matrix			Î	-								
4	Task 2: Impregnate hydroxides into porous matrices					1							
5	2.1 Electrolyte impregnating					Î							
6	2.2 OH- conductivity measurement					Î							
7	2.3 Electrolyte structure characterization					Î	•						
8	2.4 Wettability and Capillary Pressure				Î								
9	Task 3: Select anode and cathode catalysts												
10	3.1 Anode catalyst					\uparrow	-						
11	3.2 Cathode catalyst					\rightarrow	-						
12	Task 4: Assemble and test 25 cm2 single cells												
13	4.1 Single cell fabrication						\rightarrow						
14	4.2 Crossover Measurement							•					
15	4.3 Performance test								T				
16	4.4 Durability test												
17	Task 5: Construct and tast 18-KW electrolyzer stack												
17	Task 5. Construct and test 1.0-KW electrolyzer stack												
18	5.1 Design parameter										-	ļ	
19	5.2 Component selection												
20	5.3 Stack Fabrication											\rightarrow	<u> </u>
21	5.4 Stack Test												\rightarrow
22	Task 6: Perform systematic and economic analysis												\rightarrow
23	Program Management												

Milestones

	Milestone Summary Table							
	Recipient Name: Giner, Inc.							
	Project Title:			High Temperature Alkaline	Water Electrolysis			
Task No.	Task Title or Subtask Title	Milestone Type	Milestone Number	Milestone Description	Milestone Verification Process	Anticipated Date	Anticipated Quarter	
1	Develop alumina and zirconia matrices	Milestone	M1-1	Produce five LiAlO ₂ matrices with various porosity (50-80%) and thickness (200-300 µm)	Using tape-casting technique, pore size, 20-200 nm pores>50%	M3	Q1	
1	Develop alumina and zirconia matrices	Milestone	M1-2	Produce six ZrO ₂ and YSZ matrices with various porosity (50-80%) and thickness (200-300 µm)	Using tape-casting technique 20-200 nm pores > 50%	M6	Q2	
2	Impregnate hydroxides into porous matrices	Milestone	M2-1	Downselect at least six composite electrolytes with OH ⁻ $\sigma > 0.1$ S/cm	Using AC Impedance at 350 to 550 °C	M8	Q3	
2	Impregnate hydroxides into porous matrices	Milestone	M2-2	Downselect at least four composite electrolyte membranes with ASR <0.2 Ohm-cm ²	Using 4-probe resistance measurement, at 350 to 550 °C	M12	Q4	
3	Select anode and cathode catalysts	Milestone	M3-1	Synthesized four OER catalysts with particle size < 20 nm, activity comparable to Ir black	Using hydrothermal approach for synthesis and XRD for particle size	M15	Q5	
3	Assemble and test 25-cm ² single cells	Milestone	M4-1	Complete testing at least 5, 25 cm ² cells with composite electrolytes	Using Giner corrosion- resistant hardware	M15	Q5	
4	Assemble and test 25-cm ² single cells	Go/No-Go decision	M4-2	Achieve single cell performance V < 1.50 V at 1.0 A/cm ² or 1.4 V at 0.5 A/cm ²	Using polarization curves	M18	Q6	
4	Assemble and test 25-cm ² single cells	Milestone	M4-3	Achieve 300-h durability test at 0.5 A/cm2 for 300 hours with a degradation rate < 0.1 V/1000 hours	Using constant current at 0.5 A/cm ²	M21	Q7	
5	Construct and test electrolyzer stack	Milestone	M5-1	Complete design of the stack	Using CAD and solid works	M24	Q8	
5	Construct and test electrolyzer stack	Milestone	M5-2	Complete construction of the stack	Using selected components	M27	Q9	
5	Construct and test electrolyzer stack	Milestone	M5-3	Achieve stack electrical efficiency > 90% LHV H ₂ at 1.0 A/cm ²	Using I-V polarization curves	M30	Q10	
5	Construct and test electrolyzer stack	Milestone	M5-4	Demonstrate adegradation rate of < 0.1 V/500 hours at =0.5 A/cm ²	Measuring voltage at constant current	M33	Q11	
6	Perform systematic and economic analysis	Milestone	M6-1	Deliver a 5-page cost analysis for developed supports and catalysts	Using small-scale short production	M36	Q12	

Project Flow Chart

- Matrix Long-term Stability;
- Electrolyte Matrix and Electrode Fabrication Technology

Accomplishment 1: Stability of Metal Oxides in

Hydroxide System

Physical properties of Metal oxides		vsical properties of Metal oxides Hydroxide Single/ Melting		Approach: Metal oxide		
No.	Metal oxides	Surface Area (m²/g)	system	Composition	(°C)	Hydroxides
1	Baseline α-Al ₂ O ₃	7-9	LiOH	100	462	Heat treated at 450-550°C for 10 h
2	MO-1	5-20	LiOH-NaOH	52-48	~300	Washed and Dried
3	MO-2	10-15		62-38	~325	at overnight
4	MO-3	13-19		02-50	525	

Characterizations

Rod-shape structure

- The baseline metal oxide $(\alpha$ -Al₂O₃) shows significant particle changes after immersion test
- in Rod-shape structure was observed in $\alpha\text{-Al}_2\text{O}_3$ powder after immersed in single or binary hydroxide melts 9

Stability of Metal Oxide in Hydroxide System (II)

- No significant morphological changes was observed in MO-1 and MO-2 powders after immersed in single or binary hydroxide melts
- MO-1 and MO-2 powders showed stable morphology at 450 or 550 °C during immersed time of 10 h

Stability of Metal Oxide in Hydroxide System (III)

• The MO-3 powder shows stable morphology after immersion in both LiOH or LiNa hydroxide systems

Accomplishment 2: Measurement of OH- Conductivity

Experimental Metrics	Hydroxide	Single/Eutectic	Melting	Electrolyte (Wt %)	
Metal Oxide	system	(mol %)	(°C)		
Metal oxides (MO-1, MO-2, MO-3) and Baseline MO (Al ₂ O ₃)	0	0	-	0	
	LiOH	100	462	25	
	NaOH	100	318	25	
	KOH	100	406	25	
	LiOH-NaOH	52-48	~300	25	
	LiOH-KOH	62-38	~325	25	
	NaOH-KOH	52-48	~225	25	

Conductivity measurement:

- Electrochemical Impedance spectroscopy
- Area-Specific resistance

Schematic and Test Assembly for OH⁻ conductivity measurement

Accomplishment 3: Fabrication of Electrodes and Electrolyte Support Matrix

> Tape casting process for Fabrication of Electrodes and Matrix green tape

- Assembled Lab-scale tape casting machine with heating system
- Fabrication of electrodes and matrices will optimized using tape casting process
- Solvent based slurry process will be optimized the green tape of matrices

Fabrication of Electrolyte Support Matrix

Fabrication of green tape of matrix using doctor blade

SEM images of MO-1 after sintered at 550 $^{\circ}\text{C}$ for 2 h in air

- Fabrication of MO-1 matrix has been developed and optimized through tape casting process
- The SEM images show porous MO-1 matrix after sintered at 550 °C for 2 h in air atmosphere
- Porosity and pore size of fabricated matrix will be characterize by Hg-porosimetry technique

Pore size distribution of Matrices

SEM images of sintered porous matrices

Matrices	Median Pore Diameter (µm)	Porosity (%)
Baseline Matrix	0.0957	59.1840
MO-3	0.1424	76.1506

Pore size distribution of commercial matrices:

- Pore size distribution of metal oxide matrices sintered at 550°C for 2 h in air
- Pores size distribution of commercial matrices showed very narrow pore size structure
- Both matrices showed narrow pore size distribution in the range of 0.09 to 0.14 μm
- MO-3 based matrix showed higher porosity compared to baseline matrix

Stability of Electrolyte Matrix in Molten Hydroxides

> Physical and chemical properties of metal oxide and molten hydroxides

Physical properties of Metal oxide		Hydroxide	Single/	Melting		
No.	MO Matrix	Surface Area (m²/g)	system	composition	(°C)	
1	Baseline matrix	7-9	LiOH	100	462	
2	MO-1	15-20	LiOH-NaOH	52-48	~300	
3	MO-2	10-15		62-38	~325	
4	MO-3	13-19		02-00	020	

_	
	Experimental plan:
	Approach
	 Stability of matrix in hydroxide media
	Conditions
	 Temperatures: 350 to 550 °C
	 Atmospheres : Air and 3%H₂-Ar
	Characterizations
	 XRD, SEM, and BET

• Experimental approach is to understand the physical and microstructure stability of electrolyte matrix in molten hydroxide melts

Accomplishment 4: Button Cell/Single Cell Electrolyzer Assembly

> Design of Button Cell Electrolyzer Testing:

Anode and Cathode cell frame

Anode and Cathode current collector

Button Cell capacity

- Screening the anode, cathode and electrolyte matrix materials
- 2" diameter cell testing
- Single Cell capacity
 - 5x5 cm or 10x10 cm cell testing

> Single Cell Testing: Box furnace

4x4" opening in center of doors. Water will be fed to the electrolyzer cell through four 0.25" ∅ tubes. These tubes will pass through an insulating block.

3" Ø loose-fit holes in both the top and bottom of furnace. A pressure bar will apply a clamping force to the electrolyzer cell through these ports.

• The customized box furnace for 5x5 cm or 10x10 cm cell testing has been requested to Mellen Company

Physical Modifications as Shown

- □ The short term stability of different metal oxides has been performed in single and binary hydroxide melts:
 - The MO-1, 2, and 3 powders showed stable microstructure in molten LiOH-NaOH system at different temperatures
 - Changes in morphology has been observed in baseline powder in both LiOH and LiOH-NaOH melts
- □ Testing facilities for OH⁻ conductivity measurement and matrix stability in molten hydroxide systems have been assembled
- □ Lab-scale tape casting machine has been in place for fabrication of the electrodes and electrolyte matrix and green tape of matrix (MO-1) using tape casting process developed
- Commercial baseline matrix and MO-3 matrices have been characterized with pore size distribution and porosity.
 - The ideal pore size distribution is instrumental in retaining the electrolyte for long term operation
- Button electrolyzer cell has been obtained and customized box furnace for 5x5 cm² or 10x10 cm² single cell designed

<u>Collaborations</u>

Institutions	Roles
<u>Giner Inc. (Giner)</u> Hui Xu (PI), Kailash Patil, Cortney Mittelsteadt	Oversees the project; composite electrolyte development; catalyst selection, button cell, single cell and stack evaluation; cost analysis
Zircar Zirconia Inc.	Vendor for customized metal oxide matrices
<u>Fuel Cell Energy</u> Dr. Chao-yi Yuh	Will provide advice on stack assembly (w/o financial commitment)

Future Plans

- □ Perform OH⁻ conductivity measurement
- Optimize in-house fabrication of electrolyte matrix
- □ Perform characterizations of prepared green tape matrix
- Assemble and testing button and single electrolyzer cells with selected HER and OER catalysts

Select Catalysts for Anode (OER) and Cathode (HER)

- Cathode: Ni-Al or Ni-Cu alloy catalyst
- Anode: Co₃O₄/CNT or NiCo₂O₄

- Data validated from low-temperature water electrolysis;
- Elevated temperature enhance electrode kinetics

Acknowledgments

- Financial support from DOE EERE Fuel Cell Technology Office under award # DE-EE0007644
- DOE program manager: Dr. David Peterson
- Giner Personnel
 - Corky Mittelsteadt and Winfield Greene
- Fuel Cell Energy: Dr. Chao-yi Yuh
- University of Connecticut: Prof. Prabhakar Singh