Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by High Temperature Water Splitting (HTWS)

Project ID: PD144

PI: S. Elangovan – Ceramatec, Inc.

- Team: Joseph Hartvigsen, Jessica Elwell, Dennis Larsen, Tyler Hafen PARC - Ranjeet Rao, Yunda Wang. GAIA – Whitney Colella
- June 7, 2017
 - 2017 DOE Hydrogen and Fuel Cells Program Review Presentation

•																																		•	•
•			٠															•	•				٠						•						٠
•	٠	٠		٠	٠	٠	٠		•			٠	٠	٠		٠	٠		•			٠	٠	٠		٠		•		٠	٠	٠	٠	٠	٠
•	٠	٠	٠	٠		٠					٠	٠	٠	٠	٠	٠	٠	•	•	٠		٠	٠	٠		٠	٠	•	•	٠	٠	٠	٠	٠	٠
•	٠	٠	٠	٠		٠	٠	•	•		•	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠									٠	۰
٠		٠	٠	٠							•	٠	٠			٠			•	٠	•	٠		•			_								
٠	٠	٠	٠	•		٠					•	٠	٠			٠			٠	٠	•	٠	٠	•]E	R	A	M	A		F(\bigcirc
•		This presentation does not contain any proprietary, confidential, or otherwise restricted																																	
٠													ma	teria	als											_		A C	:00	RS	ГЕК	со	MP	A N Y	1
٠																٠		٠	٠										٠			٠		٠	

Overview

Timeline

- Project Start Date: October 1, 2016
- Project End Date: September 20, 2019
- Percent Completed: 5%

Barriers

- F. Capital Cost
- G. System Efficiency and
 - Electricity Cost
- I. Grid Electricity Emissions
- J Renewable Electricity Generation Integration

Budget

- Total Project Budget: \$ 1,875,101
 - Total Recipient Share: \$ 375,130
 - Total Federal Share: \$1,499,971
 - Total DOE Funds Spent*: \$ 151,840
- * As of 3/31/17

Partners

- PARC: Electrode Feature Mfg Dev
- GAIA: Technoeconomic and Lifecycle Analyses

Relevance to DOE Goals

- **Objectives:** Develop and test advanced HTWS stacks to demonstrate the potential pathway to
 - Meet the FCTO cost goals for hydrogen production <\$2/kg, excluding delivery, compression, storage, and dispensing, and
 - 2. Ability to operate on intermittent renewable energy sources for **energy storage** and grid ancillary services applications
- DOE Mission Relevance
 - Reduce petroleum use
 - Reduce greenhouse gas and air pollution emissions
 - Reduce market barriers to commercialization

Relevance to Technical Barriers

- Cost Goal
 - Improve stack performance
 - Operate at lower voltage
 - Increase lifetime

- Lower capital cost
- Reduce electric input
- Lower levelized H₂ cost
- Integration with Renewable Energy
 - •Reduce gas diffusion resistance
 - Mechanical robustness
- Pressurized H₂ Delivery
 Robust seal

- Response to transient load
- Faster heat up/cool down
- Thermal cycle capability
- Operation at pressure
- Thermal cycle

High Temperature Water Splitting

- Conventional Design
 - Electrolyte or Cermet as support
 - · Combination of tape casting and screen printing

Approach - Technical Challenges

Performance Limitations

Limiting Factors

- Electrical resistance of cell
- •Electrode non-ohmic resistance
- •Heat up/shut down, load follow
- Hydrogen purity
- Hydrogen delivery at pressure
- Lifetime

Layer thicknesses Electrode catalytic activity Gas diffusion resistance Mechanical robustness Inadequate seal Seal characteristics

Electrode chemical instability (Oxygen electrode delam) Electrode physical Integrity (H₂ electrode coarsening)

Approach – Technical Concept

- Performance Improvement
 - •Cell Design: Multi-scale Ordered Cell Structure
 - •Thin, high conductivity electrolyte (low electrolyte resistance)
 - •Macro-scale features as mechanical support on air electrode
 - Eliminate steam diffusion limitation of fuel support
 - Micro-scale ordered hydrogen electrode
 - Improve electrode performance by increasing density of reaction sites for electrochemical reduction of water
- Lifetime Improvement
 - Thermochemically stable electrode compositions
 - Oxygen electrode stability of stoichiometry
 - Hydrogen electrode high steam stability

Approach – Performance Improvement

Not to scale

- Higher conductivity electrolyte (Scandia doped)
- Mechanical support on oxygen evolution side
 - Macroporosity reduces gas diffusion resistance
- Structured hydrogen
 electrode
 - Control of composition and reaction site density
 - Thinner electrode eliminates H_2O/H_2 diffusion resistance

Approach – Technical

Cell fabrication development

- •Thin, high conductivity electrolyte
- Ordered electrode structure
- Mechanical Support

Seal

Tape casting, lamination (Ceramatec) 3D Printing (PARC) 3D Printing (PARC) Glass (Ceramatec)

Materials Selection

- •Stable dopant in oxygen electrode to eliminate delamination and cation mobility
- •Glass seal to limit gas cross over for hydrogen purity and pressurized operation
- Inert oxide dispersion to make hydrogen electrode (nickel) coarsening resistant in high steam conditions

Approach – Stack Fabrication

- Interconnects and cell joining layers from ongoing NASA CO₂ electrolysis project
- Typical ASR ~ 0.8 1.0 ohm-cm² at 800°C (0.6 – 0.7 ohm-cm² when corrected for activation polarization and CO₂ conversion)

Notional Stack Design

Approach – Milestones & Go/No-Go

Major Technical Tasks

- Baseline materials set to identify largest contributors to cell resistance
- Develop process for novel cell structure that addresses resistance contributors
- Button cell testing of new cell structure
- Production of full-scale cells
- Stack production development with new cells
- Stack testing to prove targets of 1 kg H₂/day production
- Modeling of GHG emissions vs. SMR
- Levelized cost model for target of <\$2/kg H₂

Approach – Milestones & Go/No-Go

Milestone/Go-NoGo Description	Anticipated Completion Date	% Complete
M1.0.1: Finalized Cell Design, Fabrication Process	12/17	100
M2.2.1: Cathode Ink Formulated	3/17	90
M2.4.1: Anode Ink Formulated	3/17	90
M3.2.1: Micro-patterned Cathode Films Fabrication	6/17	10
M3.3.1: Support Structure Fabricated	9/17	
Go/NG: Button Cell Structure Tested ≤ 0.4 ohm-cm ²	9/17	2 quarters of
M5.0.1: Button Cell ASR measured	9/17	effort completer
M6.2.1: Patterning Developed for Support	3/18	choir completed
M6.4.1: Cell Fabrication	6/18	
M7.0.1: Seal Demonstrated	9/17	
M8.0.1: Verification Short Stacks	6/18	
G/NG: Short Stack ASR of 0.4 ohm-cm ²	9/18	
M9.0.2: Stack capable of 1 kg H_2 /day	9/19	
M10.0.1, 2, 3: GHG Emissions of HTWS vs SMR Comparison	9/17,9/18,9/19	
M10.2.1, 2, 3: Levelized production cost < $2/kg H_2$	9/17,9/18,9/19	

ACCOMPLISHMENTS – Baseline Testing

- Button cell testing of baseline components
 - Target to reduce Electrode Polarization resistance to 0.1-0.2 ohm-cm² range
 - Baseline results include thick electrolyte
 - ASR is the sum of HFR (ohmic) and PR (electrode)

(b) Button Cell Riders EIS - Combined PR Results (Initial*)

Baseline electrodes average polarization resistance

~ 0.2 - 0.25 ohm-cm²

13

Further reduction possible with micro-featuring

Oxygen Electrode Symmetric Cell

- Prior typical current density 0.3 to 0.4 A/cm²
- High Current Density (1 A/cm²) operation shows no delamination after 300 hours

Accomplishments Tape Casting Trials; Print Ink Formulation

- Thin tape casting trials (Ceramatec)
 - Tape formulation evaluation for compatibility
 - With featured electrode
 - Support structure
 - Sintering multi-layer structure
- Electrode/Support Structure Inks (PARC)
 - Ceramic powder (Ceramatec)
 - Ink viscosity, solvent boiling point, rheology control
 - Formulation developed

Accomplishment – Patterning Ink Formulation for Oxygen Electrode Support

- Advanced Printing Techniques for Cell Design
 - Use of existing tooling for process development

- Thickness variation reduced from ±90 µm to ±40 µm by controlling baking process
- 16 New mask design in progress

Accomplishment – Micropatterning Hydrogen Electrode

- As printed hydrogen electrode
- Awaiting sintering trials

Magnified Image

Control of line thickness, pitch and composition possible

COLLABORATIONS

- Prime: Ceramatec
 - Ionic Ceramic device focused industry
 - Division of CoorsTek
- Sub: PARC
 - Development and commercialization of Printing technology
 - Division of Xerox Corporation
- Sub: GAIA
 - Technoeconomic and life cycle analysis models
 - Economically disadvantaged women owned small business (EDWOSB)

REMAINING CHALLENGES/BARRIERS

- Fabrication of new cell design
 - Lamination/Printing Compatibility
 - Sintering of multi-layer cell structure
- Button cell Area Specific Resistance <0.4 ohm-cm²
- Stack assembly
 - Joining materials compatibility with new cell structure
 - Cell flatness for stacking
 - Stack ASR 0.4 ohm-cm²
 - Seal integrity for pressurized operation
- 1 kg/day production
- Manufacturing cost verification to support <\$2/kg H₂

PROPOSED AND FUTURE WORK

- Remainder of FY17:
 - Produce structured button cells for testing
 - Demonstrate < 0.4 ohm-cm² performance
 - Begin scale up to full cell size
 - Demonstrate glass seal capability
- FY18 Tasks
 - Short stack testing
 - Demonstrate 0.4 ohm-cm² performance
- FY19 Task
 - 1 kg H₂/day stack test
- LCA & TEA with increasing fidelity

Technology Transfer Activities

- Internal planning for manufacturing development in progress
- Integration and optimization of combining Ceramatec and PARC processes

SUMMARY

- Key objective is to develop HTWS stack technology to meet
 - Performance and cost goals
- Tasks are designed to improve stack performance
 - Use of multi-scale ordered structure to address performance limiting factors
- Fabrication development well underway
 - Materials selection completed
 - Tape cast process development underway
 - Printing ink development complete
 - Printing process development underway
- Button cell testing planned for end of year 1
 - Task on schedule

٠	٠	٠	٠	٠	٠		٠	*	*	٠		٠	٠	٠	٠	٠	٠	٠	*	•	٠	۰	٠	٠	٠	٠	٠	•	*	٠	٠	٠	٠	٠	•
٠	۰	۰	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		۰	۰	۰	٠	٠	٠	٠	٠	۰	۰	۰	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	*	*	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠		•	٠
1																٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	۰	•	٠	٠
																٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	*	٠
•														٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠		
					τı	h 3	n		\ <i>\</i>	.						٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠
i i i alik you														٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠		
																٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠
																٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠	٠
-																٠	٠	•	٠	٠	٠	٠	۰	٠	٠	٠	٠	•	*	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠		٠	٠	*	•	•	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠	•	*	٠	٠	٠	٠	٠	•
٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	*	*	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	*	*	•
٠	٠	٠	٠	٠	*		٠	٠	٠	٠	٠	•	*	*	*	٠	٠	٠	٠	٠	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠	٠	*	*	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	*	*	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	*	*	•
٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	•	٠	٠
٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	۰	۰	٠	٠	٠	٠	*	٠	٠	٠	٠	۰	٠
٠	۰		٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	۰	۰	٠	٠	٠	•	٠	۰	٠	٠	۰	٠
٠	۰	۰	٠	۰	٠	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	۰	۰	۰	٠	٠	*	٠	۰	٠	٠	۰	٠
*	۰	٠	٠	۰	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	۰	٠	٠	•	٠	•	•	•	٠	٠	٠	٠	٠
٠	۰	۰	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	۰	٠	٠	٠	٠	٠	*	٠	٠	۰	۰	٠	٠										
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	٠	٠			E	K	A	M	A		E	Ű
٠	٠	٠	٠	٠	٠	*	٠	٠	٠	٠	٠	٠	٠	*	*	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•									
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		A C	:00	RST	ЕК	со	MPA	A N Y	
۰		٠	٠	٠		٠	٠	٠	٠	٠	٠		*		٠	٠	٠	٠	٠			٠	٠	٠	*	٠	٠	٠					+		

TECHNICAL BACK-UP SLIDES

Materials set developed for NASA Mars Project will be used MOXIE: Operational Cycle Testing

- Cycle life testing on dry CO₂
 - 120 minute operational cycles
- No significant cycle to cycle degradation
- Excellent Cell-to-Cell Voltage Grouping

MOXIE: Performance and Stability

Mechanical Requirements

- Structural Testing: Must withstand compressive forces required for entry, descent, landing packaging design
 - Multiple stacks tested to 10kN compressive force and then operationally cycled with no leakage or degradation
 - No leakage at 25kN on multiple stacks, only failure at 62.7 kN

MOXIE: Performance and Stability

- Mechanical Requirements
 - Shock and Vibe
 - Maintained Performance
 - Maintained O₂ purity > 99.9%
 - Cryo Testing: Must withstand thermal cycles down to -65
 - 3 cycles from ambient to -55°C
 - 40 cycles to -40°C
 - 1 cycle to -65°C

CERAMATEC*

MOXIE: Reproducibility

20+ consecutive stacks had identical performance on Dry CO₂ electrolysis

MOXIE: Summary

Baseline Performance

 15 consecutive stacks built with aerospace quality standards and traceability having a maximum baseline performance of 1.6 ohm-cm² dry CO₂ and 99.9%+ O₂ purity

Cycling Performance

• 3 stacks with 21 cycles of varying cycle-to-cycle flow rates and final cycle averages of 10.11 g O_2 /hr production and 99.8% purity – Targets exceeded

Structural Stability Testing

- No leak or significant performance change after 10kN crush testing
- Stacks tested to 25kN force with no leakage
- Only failure required 62.2kN (>30 margin of safety from design)

Shock/Vibe Testing

- Stacks vibrated at JPL and post vibe tested at Ceramatec
- No leak or significant performance change post vibe!
- No leak after shock testing, retest for performance underway

Cryo-Cycling

- Vibe stack cryo-cycled to -40°C (40 cycles), -55°C (3 cycles), -65°C
- Stack performance and purity unchanged in operational cycling post test

