

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Economic Production of Hydrogen through the Development of Novel, High Efficiency Electrocatalysts for Alkaline Membrane Electrolysis P. I./Presenter: Kathy Ayers

- Organization: Proton OnSite
- Date: June 7th, 2017

Project ID: PD147

Overview Timeline

- Phase IIB Start: 11 April 2016
- Phase IIB End: 10 April 2018
- Percent complete: 50%

Budget

Current phase project funding
 DOE share: \$1,000,000

Washington

Jniversity

in St.Louis

Current funds spent*
 DOE share: \$432,969
 *as of 4/1/17

Barriers

Barriers addressed
 F: Capital Cost

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Protoduction ^{a, b, c}						
Characteristics	Units	2011 Status	2015 Target	2020 Target		
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.2 ^d	3.9 ^d	2.3 ^d		
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f		
	%(LHV)	67	72	75		
System Energy Efficiency ^o	kWh/kg	50	46	44		
Stack Energy Efficiency ^h	% (LHV)	74	76	77		
	kWh/kg	45	44	43		

Partners

POWDER

- Georgia Tech
- Pajarito Powder
- Washington University

GeorgiaInstitute

of Technology

Page 2

Relevance: Problem to be Addressed

- Electrolyzer capital cost and \$/kg H₂
- AEM based electrolysis enables the elimination or reduction of most expensive cell materials: PGM and valve metals

Relevance: Specific Barriers Addressed

Scale-up and Manufacture Anode Catalysts (Pajarito Powder and Washington University)

Develop Improved Stable Anode Ionomer Materials (Georgia Tech and Washington University)

Integrate Scaled-up Anode Catalysts and Down-Selected Ionomers into Gas Diffusion Electrodes (**Proton**)

Verify Laboratory Scale System and Stack, for Delivery of High Purity Hydrogen (**Proton**)

GeorgiaInstitute

POWDER

of **Tech**nology

Approach: AEM Electrolysis

> Catalyst:

- > Goal: Refine lead ruthenate catalysts synthesis
 - Achieve technology transfer to commercial facility
 - Scale-up to 100g batches and evaluate cost impact

> Ionomer Dispersion:

- Goal: Baseline commercial materials and optimize ionomers in electrolysis mode
 - Improve stability through NMR analysis and bench operation

> Cell Stack and System Design:

- Goal: Design and build 10-12 cell prototype system capable of AEM operation for lab markets
 - Integrate catalyst and ionomer into membrane electrode assembly

Georgia

Technology

POWDER

Design & build prototype system for 500 mA/cm² operation

Approach Task Breakdown

Task #	Task Description	Subtask	Subtask Description	Status
1.0	Anode Catalyst Refinement and Commercialization	1.1	Down-selection and Optimization of Anode Catalyst Synthesis	90%
		1.2	Anode Catalyst Refinement	75%
		1.3	Technology Transfer and Manufacturing Optimization	10%
		1.4	Batch Scale-up and Large Scale Manufacturing Study	0%
2.0	Ionomer Integration and Down-select	2.1	Ionomer Down-select	90%
		2.2	Ionomer-Catalyst Integration and Qualification	10%
3.0	MEA Optimization and Characterization	3.1	Component Degradation Characterizations	90%
		3.2	Accelerated Stress Testing	0%
		3.3	MEA Optimization	25%
4.0	AEM Prototype Design and Verification	4.1	12-14 Cell Stack Design and Verification	30%
		4.2	System Design	20%
		4.3	Prototype Demonstration	0%
5.0	Product Release			10%
6.0	Cost Analysis and Program Management			50%

Page 6

Georgialnstitute of Technology PAJARITO

Approach: Catalyst Selection

Approach: Catalyst Refinement

- > Evaluate ratios of $A_2B_{2-x}A_xO_{7-y}$; A= Pb, B= Ru
- Refinement through PGM (Ru) manipulation

Washington

University

in St.Louis

Selection of highest activity per g of PGM for following stages of the project

Page 8

Georgialnstit

of **Tech**nology

Approach: Impact on Cost

- >80% material cost reduction over baseline OER catalyst
 - Optimum compositions of lead and bismuth ruthenates
 - Better utilization achieved with a more effective GDE structure
 - Cost reduced flow fields moving from Ti to stainless (>50% reduction)

Approach: Catalyst Tech Transfer

- > Pajarito Powder to work with Washington University on synthesis hand-off
- Verification of process transfer through instrumental analysis (XRD, BET, RDE)
- Operational testing at Proton
- On-site audits planned by Washington University
- Refinement of process will lead to 50 gram scaled up batch process
- Cost analysis and full-scale testing at Proton

Approach: Ionomer

Tokuyama AS-4 will be used as the baseline comparison

Block copolymers explored in low molecular weight form

- Short blocks versions of the low MW ionomers used
 - > Intended to create thin film on catalyst and retain efficient conduction
- Hydrophilic homopolymer evaluated

 \blacktriangleright 2 different MW (3k/4k)

Hydrocarbon copolymer (courtesy of Dr. Chulsung Bae, RPI)

Evaluate these materials as AEM electrolyzer anode ionomers

Georgia

Technolog

Approach: lonomer/Catalyst Integration

 Gas diffusion electrodes will be fabricated with Georgia Tech ionomers and Pajarito catalysts
 Water management through cell engineering

Approach: AEM Stack Design

- Incorporate cost-reduced materials compatible with AEM operation.
 - Raw material pricing of 316L SS roughly is ~1/6 of titanium
- Match size to max. current densities achieved at Phase II program end
 - ➤ Target is for 1L of H₂/min

10-cell concept drawing

POWDER

 \geq

Georgia Institute

of **Tech**nology

Approach: AEM System Design

- System design will evaluate concept required for 1L/min hydrogen output
- Leverage existing lab scale generator packaging
 - Thermal considerations, Manufacturability, Serviceability, and Lower Cost vs. PEM
- Swing bed dryer design explored for high purity

Georgia

Technology

Technical Accomplishments - Milestones

Task #	Milestone Description	Date/Status
	Select up to 3 OER catalysts from synthesis optimization for cell	7/10/2016
1.1	testing based on surface area and RDE measurements.	100%
	Complete cell testing (constant current and polarization curves)	10/1/2016
1.1	of WU catalysts to provide feedback for Task 1.2	100%
	Establish kinetic parameters and estimate lifetime of three	11/30/2016
2.1	ionomers based on in-cell electrolyzer operation.	100%
	Characterize degradation methods for catalyst and ionomer	12/15/2016
3.1	based on post operational RDE and NMR to guide Task 3.2.	75%
	Reproduce WU synthesis process at Pajarito Powder and confirm	1/15/2017
1.3	results through physical and electrochemical characterization.	100%
	Complete refinement of OER composition and synthesis	
	parameters. Polarization and steady-state data will be used to	2/10/2017
1.2	down-select the final composition.	100%
	Develop and conduct initial accelerated stress tests based on	3/1/2017
3.2	degradation mechanisms.	10%
		5/1/2017
4.2	Hold concept system design review	50%
		7/15/2017
1.3	Synthesize 25 gram batch of OER catalyst at Pajarito	25%

Task #	Milestone Description	Date/Status
	Down-select final ionomers through life-cycle testing	9/30/2017
2.2	at high current.	50%
	Verify sealing and active area loading for 12-14 cell 28	10/1/2017
4.1	cm2 cell stack.	100%
		11/1/2017
4.2	Complete fabrication of prototype system.	10%
	Develop ink composition for refined catalyst and	12/1/2017
3.3	ionomers and complete in cell testing.	75%
		12/20/2017
4.3	Complete and pass pre-start-up safety review.	0%
	Deliver 50 grams of down-selected catalyst to Proton	1/15/2018
1.4	for multi-cell operational testing.	0%
	Conduct durability test with optimized materials in a	2/15/2018
3.3	single cell stack for up to 500 hrs.	0%
	Conduct economic analysis and evaluation of the	
	catalyst scaled-up process and determine its potential	3/15/2018
1.4	and cost for commercialization.	10%
	Conduct cost-analysis on fully integrated stack and	3/31/2018
6	system.	0%

Page 15

PAJARITO

Technical Accomplishments: Catalyst

Washington

University

in St.Louis

- Operational testing was conducted to verify in-cell
- All samples showed similar behavior
- Comparison made against PHII result
- Improvements in synthesis procedure have translated to final product
- Steady-state testing conducted for stability
- Samples began to show separation

Georgia

f **Tech**nology

- Comparison made against PHII result
- Down-select for additional synthesis, tech transfer, and test identified

Technical Accomplishments: Tech Transfer

Create dilute solution of precursors

 \succ Heat and stir to seed and grow small crystallites

> Decant, filter/wash, and dry the solids

- Process has been implemented and conducted at Pajarito
- Several batches processed for RDE and operational testing

Georgialnsti

of **Tech**nology

Shipped to Proton and Washington U

POWDER

Page 17

Technical Accomplishments: Tech Transfer

> Differences in activity measured to be only 20mV max.

Technical Accomplishments: Tech Transfer

- Both polarization and steady-state trends follow RDE data for 2 samples tested
 PbRu-1 outperformed PbRu-2
- > The third sample PbRu-3, not tested in RDE, was similar to PbRu-1 in cell
 - Showed improved stability in steady-state operation
- PbRu-3 was selected for longer duration testing in future work

Technical Accomplishments: Ionomer

- Ionomer testing was conducted through steady-state operation at GT
- Variations in MW and conductivity were explored

Compared to Tokuyama baseline for stability in pure water

Georgia Institute of Technology

PAJAR

Technical Accomplishments: Ionomer

Ionomer samples sent to Washington University

> NMR used to evaluate pristine versus operated samples for signs of degradation

Georgia In

f **Tech**nology

Technical Accomplishments: Ionomer

Note: 4k2T homopolymer sample is currently being tested. Will update with data once completed.

> Down selection of ionomers based on initial 12 hour testing performance and NMR

- 3k2T Homopolymer, 4k2T Homopolymer, 20k2T Block Copolymer
- Tokuyama AS-4 (for baseline comparison)

Georgia Institute of Technology

PAJA

Technical Accomplishments: Stack and System Development

- Work initiated on stack and system concepts
- Test stack and system fabricated and moving towards verification testing
- > Majority of effort in Year 2

Technical Accomplishments: Stack and System Development

- Gas purity verified through collection of dew point measurements
 Evaluation of swing bed PSA dryer concept
- Product flow rates verified by mass flow meter measurements
- Thermal profile of system collected and used for iteration on cooling scheme and long-term stability

Example of thermal profile data set

POWDER

Georgia In

of **Tech**nology

Technical Accomplishments: Combined Operational Test

- 1-cell AEM stack was assembled
- Leveraged inputs from all collaborators

Fully Integrated Durability Test

GeorgiaInstitute of Technology

Catalyst

(Proton)

System

(Proton)

PAJARITO

Technical Accomplishments: Combined Operational Test

University

in St.Louis

ON SITE

Georgia Institute of Technology

Collaborators

- Georgia Tech (Subcontractor)
 - Synthesis and tuning of anode ionomer
 - Degradations studies and down-select for full-scale testing
- Washington University (Subcontractor)
 - Refine and down-select OER catalyst compositions
 - Support catalyst and ionomer degradation studies
 - Transfer the catalysts synthesis process to Pajarito Powder and assist with implementation at scale
- Pajarito Powder (Subcontractor)
 - Adopt the OER synthesis process and refine based on expertise
 - Identify methods for increased batch size and cost reduction through process refinement and leveraging economies of scale
 - Product 25-50g batches for delivery to Proton for full-scale testing

Georgia

Technology

Future Work

- Catalyst
 - Continued refinement of synthesis process for increased yield and reduced cost
 - Verify structure and activity through XRD, RDE and in-cell testing
 - Cost estimates at production scale batch sizes (1kg)
- lonomer
 - Test down-selected ionomers to high current and accelerated test protocols developed under PHII
 - Process materials for continued test availability in Year 2
 - Investigate water transport rates vs. pressure
- Cell and System Design

- Tune electrode fabrication process for further loading reduction
- Build, test, and iterate on design for 1L/min AEM stack and system prototype utilizing partners materials
- Present final design in prototype internal gate review

Georgia

Technology

Summary

- **Relevance**: The goal of this effort is to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) with PGM electrodes
- Approach:
 - Optimization of anode ionomer for improved stability and conductivity vs. current commercially available materials. Verify through in-cell steady-state and accelerated test parameters.
 - Synthesize highly active PbRu OER catalysts with minimal PGM content. Transfer technology to commercial catalyst manufacturer for scale-up and yield improvement.
 - Develop a prototype laboratory scale AEM system capable of 1L/min hydrogen flow rate.
 - Utilize cheaper materials of construction for cell stack and system design to further reduce total \$/kg H₂.
- Collaborations:
 - Georgia Tech: Development of a stable, anode ionomer through the use of short block, low molecular weight block copolymers providing efficient channel conduction.
 - Washington University: Refine composition of PbRu pyrochlore OER catalysts, while maintaining high activity.
 Support degradation analysis of ionomer and technology transfer of catalyst synthesis to Pajarito Powder.
 - Pajarito Powder: Implement and refine synthesis process developed at Washington University for scale-up to 50-100g batch sizes. Provide cost estimation for 1kg scale production volumes.
- Proposed Future Work:
 - Continue synthesis and scale-up of highly active, low PGM OER catalysts.
 - Synthesize additional anode ionomer for accelerated and long-term durability testing.
 - Optimize cathode and anode GDEs to realize additional loading reductions.
 - Integrate all materials and operating modes into optimal cell and system configuration for prototype review.

