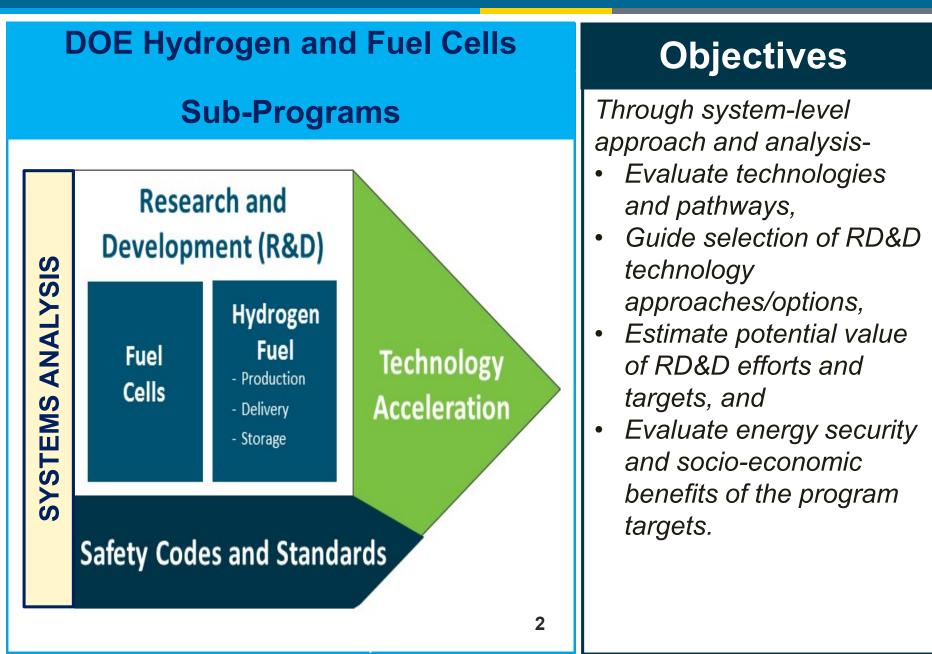
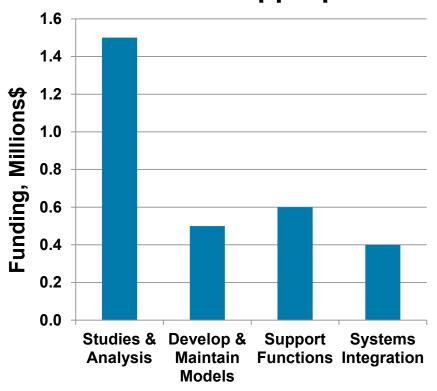


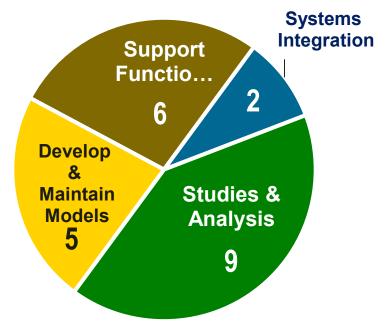
U.S. DEPARTMENT OF



Systems Analysis Program Area - Plenary Presentation -


Fred Joseck Fuel Cell Technologies Office

2017 Annual Merit Review and Peer Evaluation Meeting June 6, 2017


FY 2017 Appropriation = \$3.0 M

FY 2017 Appropriation

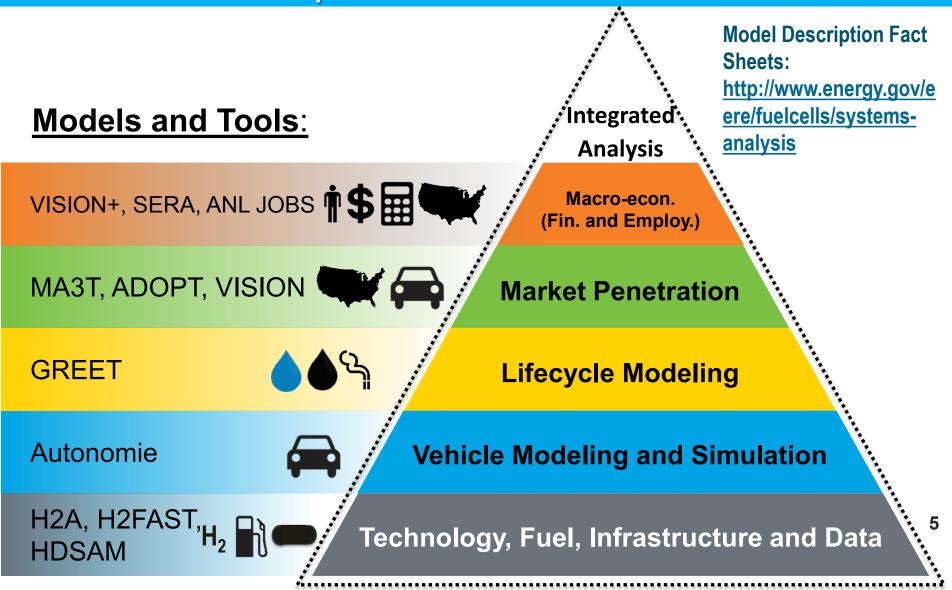
Focus: Determine technology gaps, evaluate impacts of early stage R&D and estimate benefits of energy security and economic/job growth from key technology advances.

Number of Activities by Focus Area

Strategy Support a strong foundation of data, build relevant analytical models and execute insightful integrated analyses

4

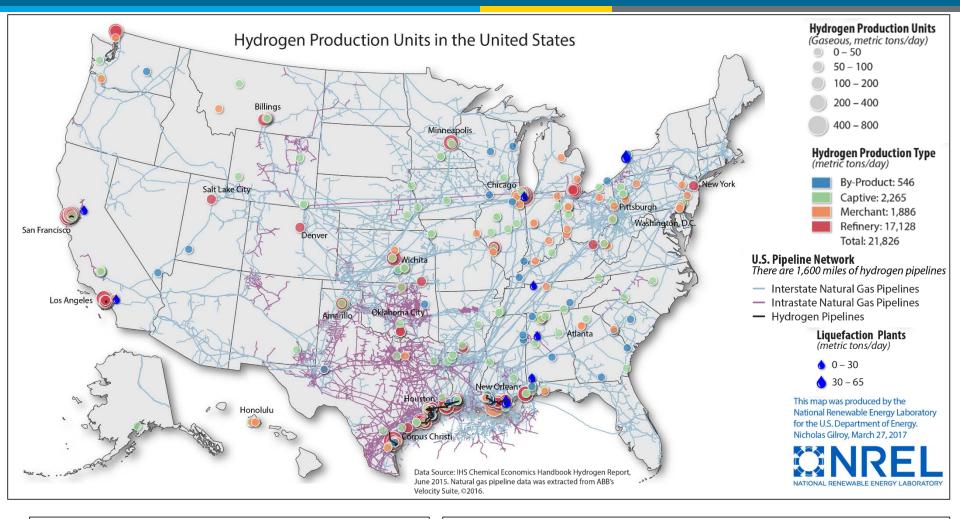
Partnerships with labs, industry, academia


System Analysis Framework	Models and Tools	Studies and Analysis	Deliverables/ Results		
 Consistent and transparent data Prioritized analysis 	 Life cycle analysis benefits of hydrogen and fuel cells for diverse applications 	 Initial phases of technology early market penetration 	 Support decision- making processes and milestones 		
tasksOrganize data and	 Portfolio of validated models for near and long term analyses 	 Long-term potential and issues 	 Direction, planning and resources 		
results for decision making		 Energy security analysis 	 Independent analysis to validate decisions 		
 Effective analytical workshops to gather key input assumptions for analysis 		 Energy storage analysis 	 Risk analysis of program area targets 		
		 Resource supply for hydrogen production 	 Sustainability metrics 		
		 Consumer choice and behavior impacts 			
FCTO Program Collaboration and Input					

Internal and External Peer Review

Systems Analysis Program at a Glance

DOE's Fuel Cell Technologies Office model and tool portfolio is versatile, comprehensive and multi-functional.


FCTO Analysis Portfolio in Summary

Analysis Type: Models:	Tech., H ₂ , Infras & Data	VEHICLE	Lifecycle	MARKET	MACRO	- The FCTO analysis portfoli (left) covers the full analysi space and includes some redundancies				
H2A						 Some projects (e.g., GPRA, below) span all categories 				
HDSAM						analyses				
ORNL and HyARC databases										
Autonomie						Example:				
FASTSim						GPRA* Integrated Analysis				
GREET										
MA3T						H2A, HDSAM and expert input				
ADOPT						Autonomie				
						GREET				
SERA						MA3T				
JOBS						VISION				
VISION						* Government Performance Results Act 6				

Hydrogen Infrastructure: Production Sites in the U.S.

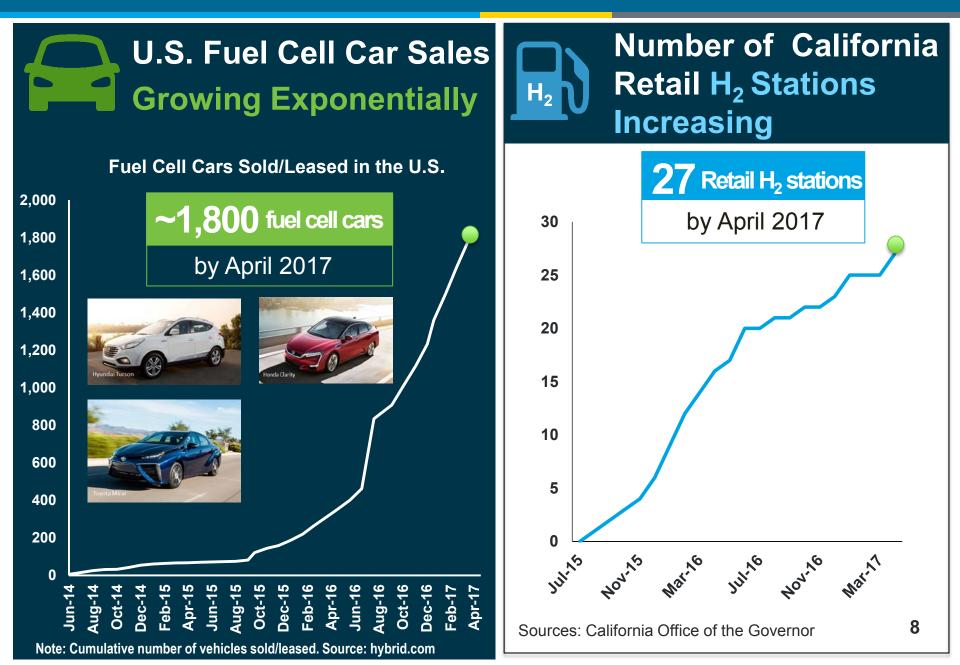
U.S. DEPARTMENT OF ENERC

Petroleum Processing

U.S. annual hydrogen production

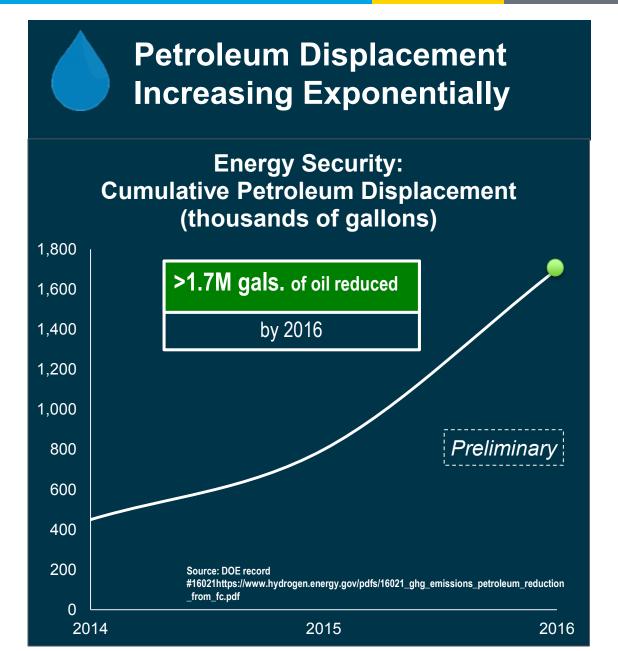
10 million metric tons

Largest Users in the U.S.


68%

Fertilizer

Production 21%


Fuel Cell Car Sales and H₂ Stations on the Rise

U.S. DEPARTMENT OF

Energy Security Benefits resulting from Hydrogen and Fuel Cell Technologies

DOE Hydrogen and Fuel Cells Impact

U.S. DEPARTMENT OF

Innovation

Job Potential from H₂ Refueling Infrastructure Buildout

H₂ A single H₂ fueling station creates ~52 jobs

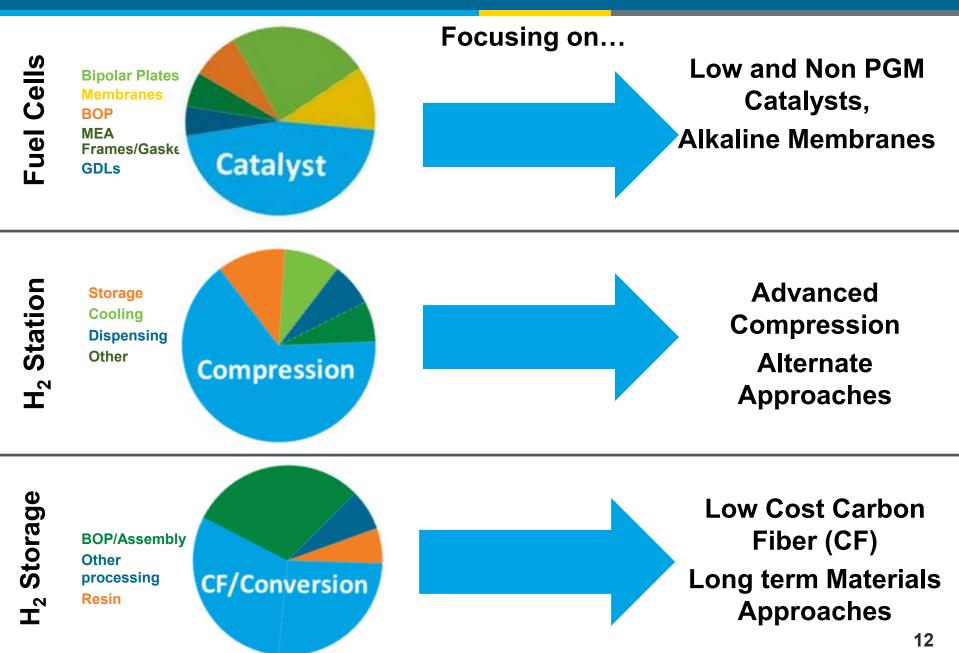
Station development accounts for 73% of jobs; station operation for 27% of jobs Source: ANL JOBS model and California report

Job Potential

in the fuel cell car sector

Source: DOE, U.S. Energy and Employment Report (2017)

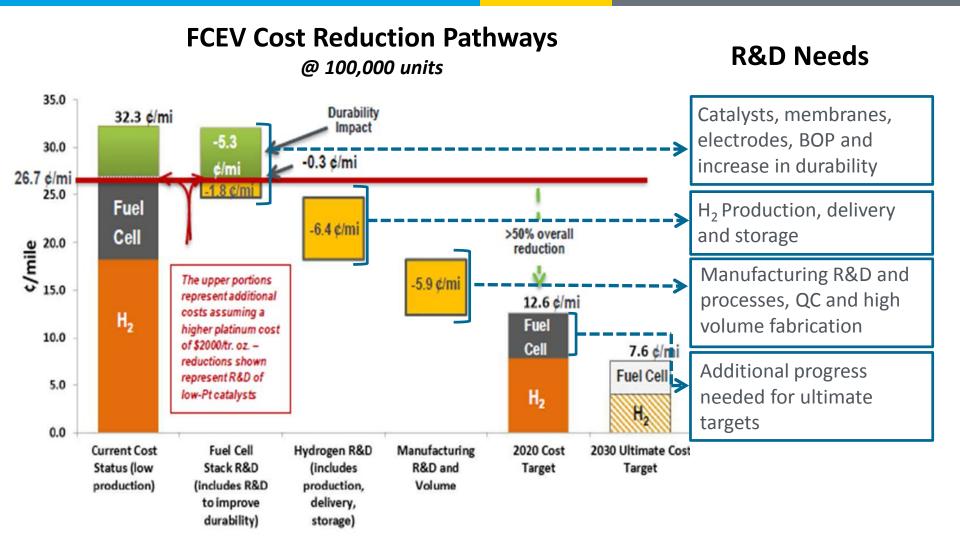
Future More than


from future fuel cell car sales

Under an approximately 20% market penetration scenario. Source: Preliminary results from employment study update (ANL)

Systems Analysis – FY16-17 Highlights Accomplishments

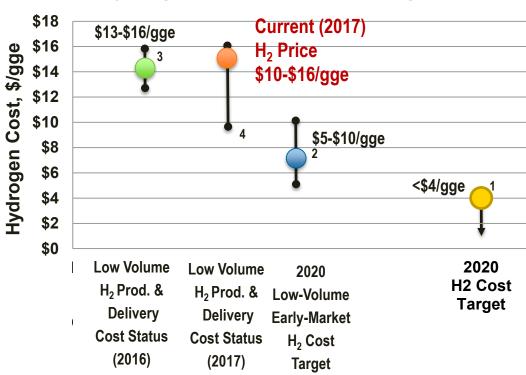
Techno-Economic Analysis Guides R&D Portfolio



U.S. DEPARTMENT OF

anard

13



Total cost of ownership analysis identifies key R&D needs to be competitive with incumbent and other advanced technologies

Hydrogen Cost Targets and Status

Current cost of low volume dispensed H_2 (includes production and delivery) ranges from \$10 – \$16/gge in California.

Hydrogen Cost Status and Target

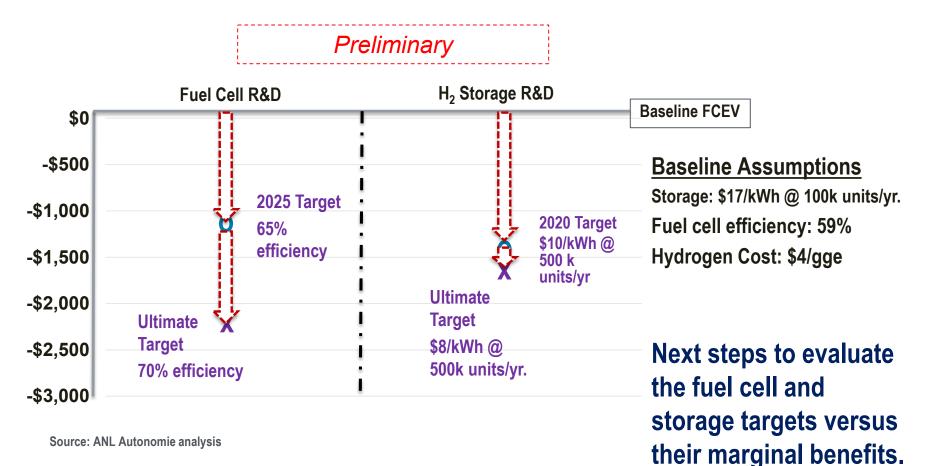
1 - Record 11007 Hydrogen Threshold Cost Calculation

- 2 Record 15011 Low Volume Hydrogen Production and Delivery Cost Status
- 3 Record 15012 Low-Volume Early-Market Hydrogen Cost Target
- 4 Air Products and Chemicals press release 2017

Objective:

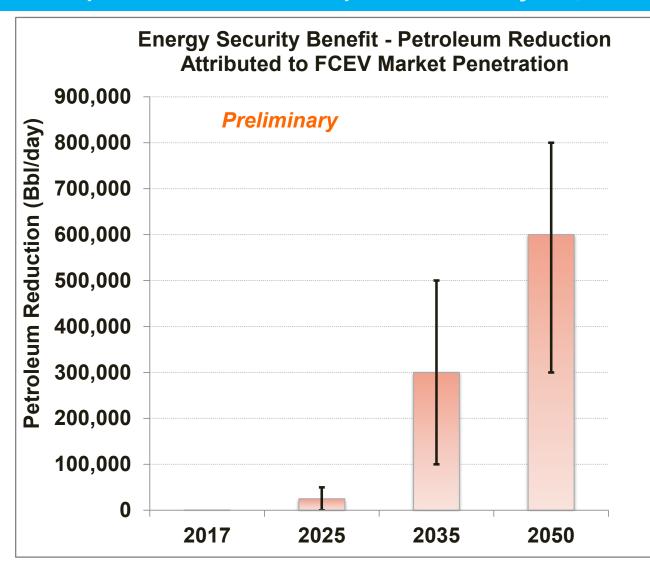
Assess the hydrogen cost for low volume production/delivery for current market applications for transportation fuel.

Basis and Notes:


- The cost of hydrogen is based on hydrogen produced at a central production site.
 - Delivery by gaseous or liquid truck within 200 miles at volumes of 500-1000 kg/month.
 - Production cost based on actual costs provided by industrial gas suppliers and end users.
- Hydrogen cost for compression, storage and dispensing is based on the results from H2FIRST Station Design Report.
- Current selling price range of H₂ at public retail stations in California is \$9.99-\$16.00/gge (5/2017).

FCTO Target Analysis

Achieving FCTO program R&D targets can reduce FCEV fuel and component manufacturing costs by \$2,600 - \$4,000


Impact of FCTO Targets on Fuel Savings and Vehicle Cost Reduction

Energy Security Analysis: Petroleum Reduction from FCTO R&D

In a portfolio of conventional and alternative technology vehicles, FCEVs can achieve market penetration and reduce petroleum use by 300,000 – 800,000 bbls/d

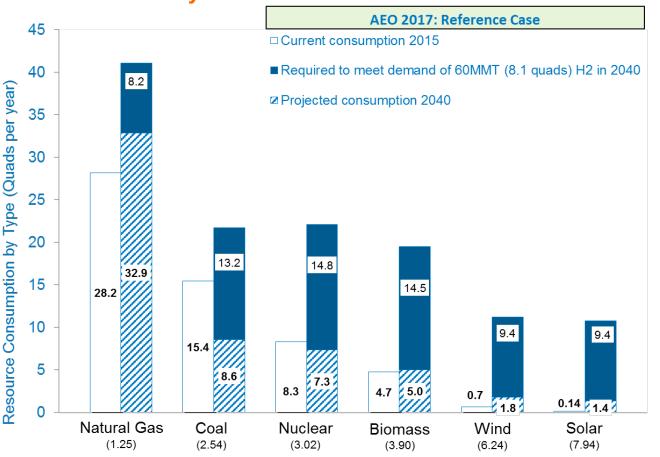
Analysis basis

- Based on combined analysis of VTO and FCTO
- FCEVs included in a portfolio of vehicles including ICEVs, HEVs, PHEVs and BEVs.

FCEV Assumptions				
	Base	Program targets		
Fuel cells, \$/kW	48	30		
Storage, \$/kWh	17	8		
H ₂ Cost, \$/gge	8	3		
Infrastruct.	Follows Veh. penetration			

Various FCEV models show superior cost benefits for driving ranges >150 miles

Total Cost of Ownership (TCO) Difference between FCEVs and BEVs Assumptions						Assumptions		
Prelimina	ry	Year: 2040 (FCEV minus BEV-X Cost)				Range: 13,000 miles/yr. BEV: Battery cost: \$165/kWhr		
	50 Miles	l 00 Miles	l 50 Miles	200 Miles	250 Miles	800 Miles	350 Miles	Electric price: \$0.12/kWh
1		ر ا				С Ф. 1 Г	က ¢0 10	Fuel cell cost: \$30/kW
Two-Seaters	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19	Fuel Cell Cost. \$30/KW
Minicompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.10	-\$0.13	Storage: \$8/kWh
Subcompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.11	-\$0.14	J J
Compacts	\$0.04	\$0.01	ГС			\$0.12	-\$0.15	Hydrogen cost: \$2.50/gge
Midsize Cars	\$0.05	\$0.01	FC	EVS Fa	avored	\$0.13	-\$0.17	
Large Cars	\$0.04	\$0.01	-\$0.02	-\$0.06	-\$0.09	-\$0.12	-\$0.16	Discount rate: 7%
Small Station Wagons	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19	
Pass Van	\$0.03	-\$0.01	-\$0.06	-\$0.11	-\$0.15	-\$0.20	-\$0.24	Vehicle ownership: 15 yrs.
SUV	\$0.03		-\$0.08	-\$0.14	-\$0.19	-\$0.25	-\$0.30	
Green shading cells are favorable TCO for FCEVs. TCO expressed in \$/mi.								

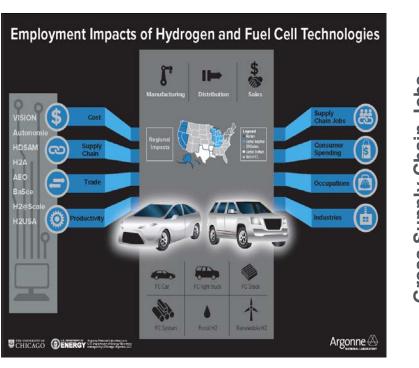

Source: Market Segmentation of Light-Duty Battery Electric and Fuel Cell Electric Vehicles

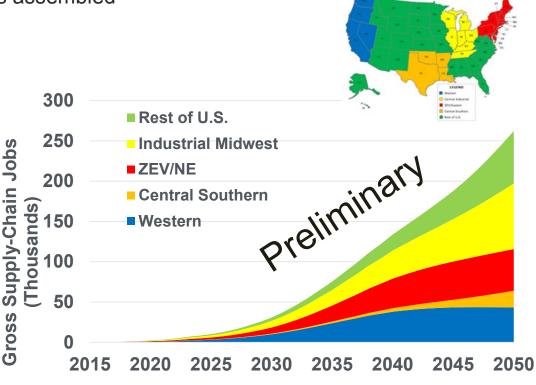
Resource Analysis

U.S. has an abundance of regionally distributed domestic resources to produce fossil fuel-based and renewable hydrogen

Preliminary

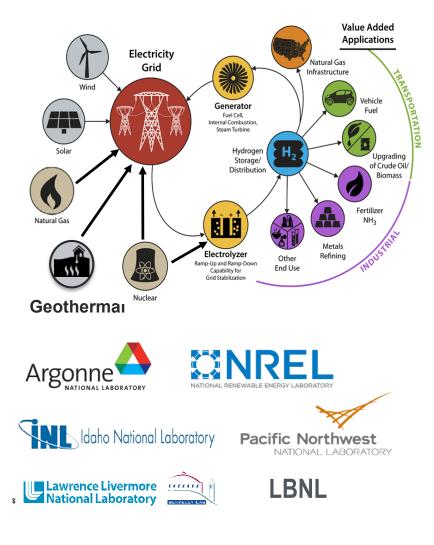
- Hydrogen can be produced from a variety of domestic resources including natural gas, nuclear, solar, wind and biomass.
- Resources are regionally distributed to meet hydrogen demand of FCEVs.
- Ratio of projected 2040 consumption and additional resource needed to supply 60 MMT H₂/yr is shown as a factor in parenthesis below each resource label at left.


Employment Analysis



By 2050, ~260,000 Jobs Associated with FCEV <u>Manufacturing</u>, <u>Distribution & Sale</u> (MDS)

Multi Market Scenario, Supply-Chain Employment (Direct + Indirect)

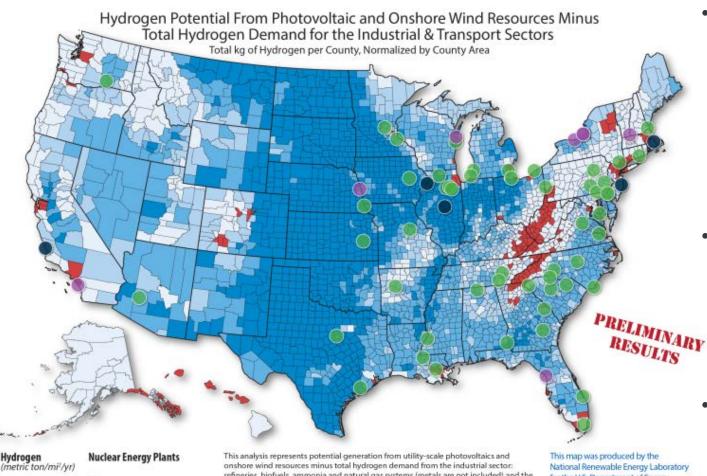

- ~100,000 gross supply-chain jobs associated with FCEV manufacturing
- ~160,000 gross supply-chain jobs associated with FCEV <u>distribution &</u> <u>sales</u>, independent of where FCEV is assembled

H2@Scale Analysis

Phase I - Analysis

- Initial Step (Complete)
- Identify potential demand
- Examine supply resources
- Identify impact potential
- Identify infrastructure issues

In-depth Analysis (FY17)


- Vette initial results with stakeholders in Texas workshop
- Evaluate H₂ price requirements
- Identify supply options and costs
- Examine 3 scenarios
- Identify impact potential
- Perform stage-gate review

Additional analysis (FY18)

- Identify future scenarios
- Examine economic inertia and externalities
- Perform spatial analysis

H2@Scale: Where Resources are Sufficient

U.S. DEPARTMENT OF

Currently Operating
 Announced Retirement

Recently Retired

2,000 - 4,500

1,000 - 2,000

350 - 1,000

-12,200 - 0

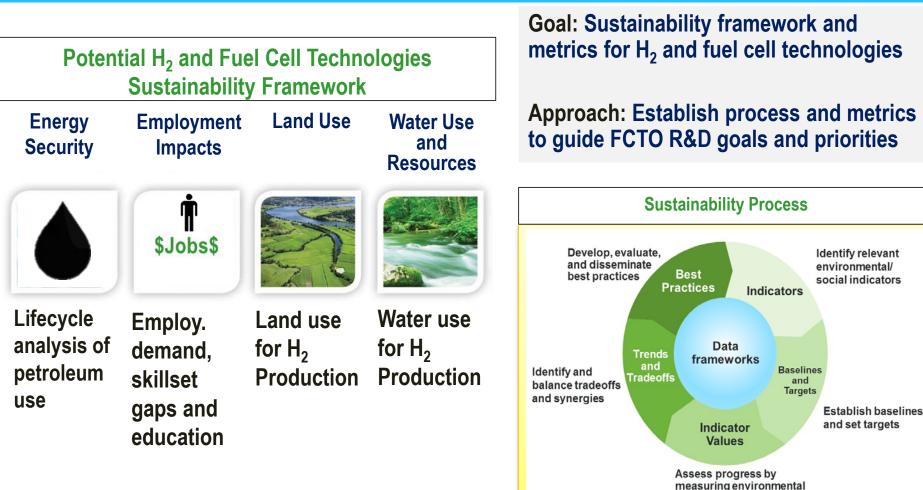
0 - 350

This analysis represents potential generation from utility-scale photovoltaics and onshore wind resources minus total hydrogen demand from the industrial sector: refineries, biofuels, ammonia and natural gas systems (metals are not included) and the transport sector: light duty vehicles and other transport. The data has been normalized by area at their respective spatial scales, and then summarized by county.

Data Source: NREL analysis

Robson, A. Preserving America's Clean Energy Foundation. Retrieved March 23, 2017, from http://www.thirdway.org/report/preserving-americas-clean-energy-foundation This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy. Nicholas Gilroy, March 27, 2017

PV and wind resources exceed industrial + transportation demand (not including metals) in **counties colored blue**


- Industrial + transportation demand is greater than resources **only in counties colored red**
- Nuclear production could provide the necessary additional generation

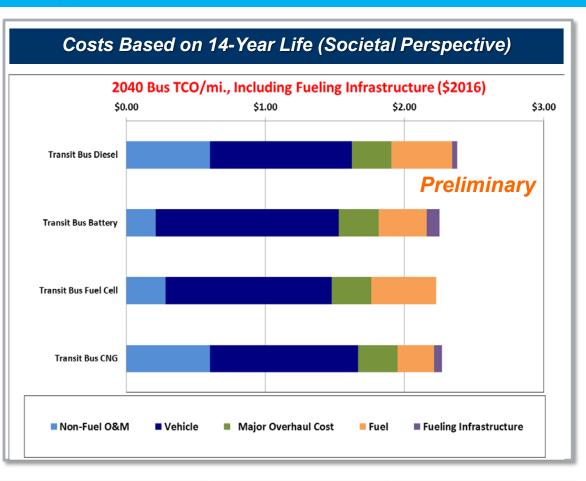
Most counties have sufficient renewable resources. Those that do not have renewable or nuclear resources nearby. 21

Sustainability Analysis

Develop sustainability framework and metrics to gauge the impacts of hydrogen and fuel cell technologies

Technology Analysis: Total Cost of Ownership for Buses

Multiple alternative-fuel buses are projected to be cost competitive on a life-cycle basis— supporting a portfolio approach for advanced vehicle evolution.

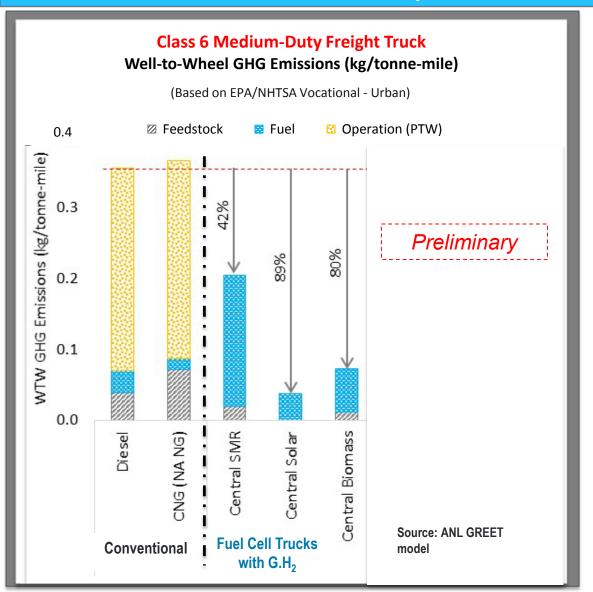

- Joint analysis project with feedback
 from the Vehicle Technologies
- Vehicle life cycle costs being updated based on peer reviewer input

Assumptions

- 14-year ownership
- 35,000 miles per year
- 5% discount for annual fuel costs

Vehicle Types

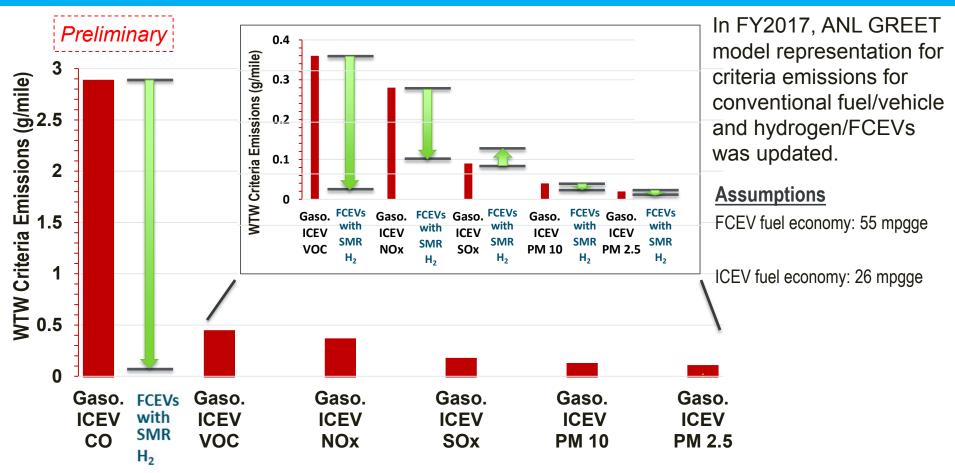
Ref. SI: Diesel Transit bus Advanced battery: Transit Bus Battery Advanced fuel cell: Transit Bus Fuel Cell CNG: Transit Bus CN



2040 Costs	FC Buses	BEV Buses
Battery Cost, \$/kWh		\$250
Fuel Cell Cost, \$/kW	\$300	NA
Fuel Cost in ¢/kWh	\$4.00	18¢

Well-to-wheel analysis of GHG emissions: Mediumand heavy-duty freight trucks

Gaseous hydrogen fuel cell trucks can achieve ~40-90% GHG emissions reduction compared to diesel.



- On a tonne-mile basis, gaseous (G.H2), hydrogen fuel cell hybrid-electric trucks (Class 6 and 8) emit less WTW GHGs in comparison with baseline diesel.
- GREET model for truck analysis has been upgraded to include fuel cells for multiple classes.

Criteria Emissions

Criteria emissions attributed to FCEVs are significantly less than gasoline ICEVs. and achieve zero emissions during idling

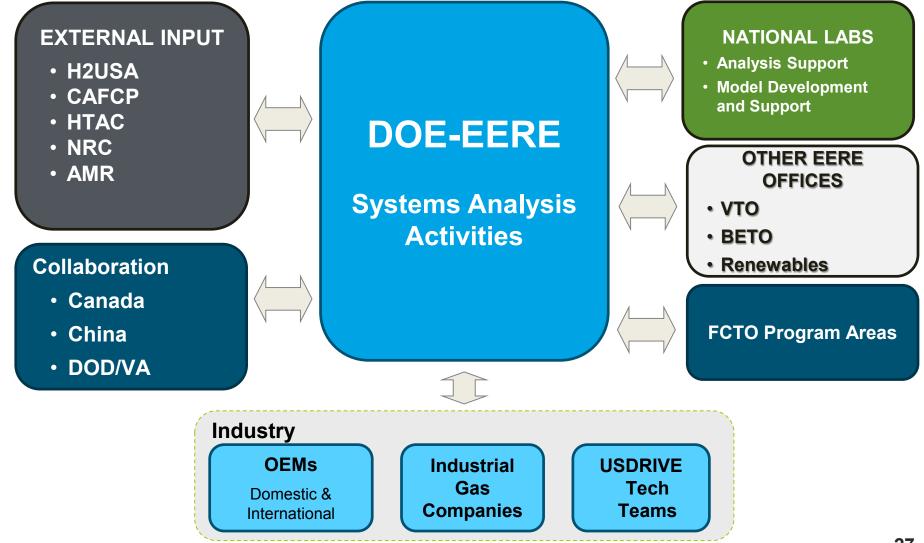
Source: ANL GREET model

Significant FCEV attribute: Criteria emissions from FCEVs during idling will be ZERO.

Recent and Upcoming Activities

Emphasis in FY17

- Early market and infrastructure analysis
- Life-cycle analyses of cost, petroleum use, and water use.
- Assess programmatic impacts on market penetration, job creation, and return on investment.
- Evaluate sustainability framework and metrics for FCTO


FY 2017	FY 2018
Gaps and drivers for early market infrastructure cost	 Gaps and drivers for program R&D
 Employment study - national employment impacts 	 Program R&D target impact assessment and integrated analysis
 Sustainability metrics for FCTO 	 Energy security impact of FCTO targets and programs
GHGs for medium & heavy duty trucks	Sustainability metrics for FCTO
 Integrate consumer choice in vehicle market penetration 	 Target and metric assessment for medium & heavy duty trucks
	H2@Scale analysis

Collaborations

Analysis and peer review input coordinated among national and international organizations.

Contacts

For more information contact:

Fred Joseck - Team Lead 202-586-7932 fred.joseck@ee.doe.gov					
Tien Nguyen !RETIRED!	John Stevens <u>INEW!</u> 202-586-7925 john.stevens@ee.doe.gov				
Shawna McQueen INEW! 202-586-0833 shawna.mcqueen@ee.doe.gov	Vanessa Trejos Support Contractor 202-586-5153 vanessa.trejos@ee.doe.gov				

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office