

Hydrogen Storage Program Area-Plenary Presentation-

Ned T. Stetson
Fuel Cell Technologies Office

2017 Annual Merit Review and Peer Evaluation Meeting

June 5 - 9, 2017

Objective: Develop H₂ storage technologies with performance to enable fuel cell products to be competitive with conventional technologies

For Light-Duty Vehicles:

- Comparable driving range
- Similar refueling time (~3 minutes)
- Comparable passenger and cargo space
- Equivalent level of safety

Onboard H₂ storage targets to be reviewed approximately every five years and revised as appropriate

GOAL: Develop advanced hydrogen storage technologies to enable successful commercialization of hydrogen fuel cell products

Onboard Storage Target Revisions

Vehicle performance has improved since the 2008/09 target review

- Fuel economy range increase from 48-53 to 49-67 miles per kg H₂
- Autonomie (ANL) available for full vehicle performance analysis

Onboard storage targets are periodically reviewed in terms of current vehicle performance data and revised as appropriate

Revised Onboard H₂ Storage Targets

Revised System Targets for Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

,		, 0	•	•		
Storage Parameter	Units	2020 (previous)	2020 (new)	2025 (new)	Ultimate (previous)	Ultimate (new)
System Gravimetric	kWh/kg	1.8	1.5	1.8	2.5	2.2
Capacity:	(kg H ₂ /kg	(0.055)	(0.045)	(0.055)	(0.075)	(0.065)
	system)					
System Volumetric	kWh/L	1.3	1.0	1.3	2.3	1.7
Capacity:	(kg H ₂ /L	(0.040)	(0.030)	(0.040)	(0.070)	(0.050)
	system)					
Storage System Cost:	\$/kWh net	10	10	9	8	8
	(\$/kg H ₂)	(333)	(333)	(300)	(266)	(266)
Charging / Discharging						
Rates:						
System fill time	min	3.3	3-5	3-5	2.5	3-5

New Onboard H₂ Storage Targets

New System Targets for Onboard H₂ Storage for Light-Duty Fuel Cell Vehicles

Oliboard H ₂ Storage for Light-Duty Fuel Cell Vehicles							
Storage Parameter	Units	2020 (new)	2025 (new)	Ultimate (new)	Notes		
Charging / Discharging Rates: Average flow rate	(g/s)/ kW	0.004	0.004	0.004	New target to differentiate between Average flow rate & Minimum full flow		
					rate		
Dormancy: Dormancy time target (minimum until first release from initial	Days	7	10	14	New targets to address Dormancy (a challenge for systems that operate below ambient temperate)		
95% usable capacity) Boil-off loss target (max reduction from initial 95% usable capacity after 30 days)	%	10	10	10			

The full set of onboard H₂ storage targets available online at: https://energy.gov/node/1315186

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs ¹ \$/kWh (\$/kg H ₂)
2020	1.5	1.0	\$10
	(0.045)	(0.030)	(\$333)
2025	1.8	1.3	\$9
	(0.055)	(0.040)	(\$300)
Ultimate	2.2	1.7	\$8
	(0.065)	(0.050)	(\$266)
Current Status ²			
700 bar compressed (5.6 kg H ₂ , Type IV, Single Tank)	1.4	0.8	\$15
	(0.042)	(0.024)	(\$500)

The full set of H₂ storage targets can be found on the Program's website: https://energy.gov/eere/fuelcells/downloads/doe-targets-onboard-hydrogen-storage-systems-light-duty-vehicles

¹ Projected at 500,000 units/year

² FCTO Data Record #15013, 11/25/2015: https://www.hydrogen.energy.gov/pdfs/15013 onboard storage performance cost.pdf

Hydrogen Storage Team - Strategy and Barriers

Objective: Achieve a driving range competitive with conventional vehicles for full span of light-duty vehicles, while meeting packaging, cost, safety, & performance requirements

FY 2017 Appropriation = \$15.6M

FY2017 Funding Allocations by Focus Area

Emphasis is on early phase R&D for H₂ storage materials and lower cost physical storage

Number of Projects in Portfolio by Focus Area

(Includes subs directly funded by DOE)

Physical Storage Activities

Current Status - 700 Bar System Cost Breakout

- Cost breakdown at 500k systems/yr.
- System cost is dominated,
 72%, by composite materials
 and processing
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

Ordaz, G., C. Houchins, and T. Hua. 2015. "Onboard Type IV Compressed Hydrogen Storage System - Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record, https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf, accessed 5 July 2016.

Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems

Current Status – 700 Bar System Cost Breakout

- Cost breakdown at 500k systems/yr.
- System cost is dominated,
 72%, by composite materials
 and processing
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

Ordaz, G., C. Houchins, and T. Hua. 2015. "Onboard Type IV Compressed Hydrogen Storage System - Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record, https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf, accessed 5 July 2016.

Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems

Precursor development for low-cost, high-strength carbon fiber (CF) for use in composite overwrapped pressure vessel applications

- Resulting CF to have properties similar to Toray T700S
- Target cost of \$12.60/kg of CF

Areas of interest:

- PAN-based fibers formulated with co-monomers and additives that permit lower cost processing to produce the PAN fiber than conventional solution spinning processes, and or that reduce the conversion cost of the PAN-fiber to CF;
- Polyolefin-based fibers capable of being cost effectively converted into high-strength CF;
- Novel material precursor fibers that can lead to low-cost, high-strength CF production.

Alternative Resin and Manufacturing [Materia/MSU/Spencer Composites/ Hypercomp Engineering]

- Reducing composite volume/mass through use of alternative resin and manufacturing processes
- Improved process cut resin infusion time in half for prototype tanks

Nested Assembly for New Process

Conformable 700 bar H₂ Storage Systems [CTE/HECR/UT/Stan Sanders]

- Developing conformable 700 bar pressure vessels without use of carbon fiber composites
- Demonstrated vessel with a 34,000 psi burst (2345 bar), exceeding the 2.25 safety margin for 700 bar systems

ST126

Alternative Materials for BOP [SNL/Hy-Performance Materials]

- Identifying alternative alloys to lower BOP cost and weight through testing and computational material screening
- Identified alloys with potential to reduce cost and weight by >50% compared to 316L SS baseline

Insulation for Cryogenic Storage Tanks [Vencore/Aspen Aerogels/Energy Florida/Hexagon Lincoln/IBT/NASA-KSC/SRNL]

- Developing integrated advanced insulation system capable of meeting dormancy requirements for vehicle applications
- Down-selection of concept technologies in-progress

Institute for Advanced Composites Manufacturing Innovation

- Institute of Manufacturing USA
- Managed by the EERE Advanced Manufacturing Office
- Technology Focus Areas:
 - Vehicles
 - Wind Turbine Blades
 - Compressed Gas Storage Vessels
 - Design, Modeling & Simulation
 - Composite Materials & Processes

Leveraged project: Thermoplastic Composite Compressed Gas Storage Tanks

- Project lead: DuPont
- Partners:
 - Composite Prototyping Center (CPC)
 - Steelhead Composites
 - University of Dayton
 Research Institute (UDRI)
- Kick-off: FY2017, Q1

Leveraging efforts of the Institute for Advanced Composites Manufacturing Innovation

Materials-Based Storage Activities

HyMARC: Hydrogen Materials – Advanced Research Consortium

Enabling twice the energy density for onboard H₂ storage

Fuel Cell Technologies Office | 17

National Laboratories

Core **Team**

Characterization and Validation **Team**

- **Applied materials development**
 - Novel material concepts
 - · High-risk, high-reward
- **Concept feasibility** demonstration
- Advanced development of viable concepts
- Foundational research
- **Material development tools**
 - Foundational R&D
 - Computational modeling development
 - Synthetic/characterization protocol development
- **Guidance to individual projects**
- **Database development**
- Characterization resources
 - "User-facility" for HyMARC projects
- Characterization method development
- Validation activities
 - Validation of Performance
 - Validation of "Theories"

HyMARC – Understanding the phenomena of hydrogen interactions with materials

Effective thermal energy for H₂ release:

$$\Delta E(T) = \Delta H^{\circ} \quad (T)$$

Task 1: Thermodynamics

Task 2: Transport

Task 3: Gas-surface interactions

Task 4: Solid-solid interfaces

Task 5: Additives and dopants

Task 6: Materials informatics

ST127, ST128, ST129, ST130

HyMARC – Understanding the phenomena of hydrogen interactions with materials

Fuel Cell Technologies Office | 19

Studying model systems to isolate physical factors and mechanisms

HyMARC accomplishments – theory capabilities

Improved sorbent isotherms

Recipes for integrating different levels of theory in sorbent isotherm models

Seedling: Chung/PSU

Accurate hydride thermodynamics

Finite-*T* free energy, environment- and morphology-dependent thermodynamics

Seedlings: Liu/ANL, Severa/U. Hawaii Solid mechanics & interfaces in hydrides

Internal and confinement stress effects; reactive diffuse interfaces

Seedlings: Liu/ANL, Severa/U. Hawaii Kinetic modeling

Semiempirical kinetic modeling and rate analysis; phase evolution kinetics

Seedlings: Liu/ANL, Severa/U. Hawaii

Additional accomplishments in compiling databases and reference libraries ("Task 6"):

- Simulated & measured spectroscopy database (NMR, FTIR, XAS/XES) for identifying MgB_xH_y
 (preparing manuscript w/LBNL/SNL/HySCORE)
- Library of analytical free energies for Li-N-H (published) and Mg-B-H (preparing manuscript), with validation at a range of pressures via NMR (w/SNL/HySCORE)
- Database of classical potentials for simulating borohydride mixtures and interfaces (w/SNL)

ST129

HyMARC accomplishment – understanding role of additives on sorption kinetics

Fuel Cell Technologies Office | 21

- Investigated model system Ti-doped NaAlH₄ via AP-XPS, LEIS and Auger spectroscopy
 - Detected no Ti species on sample surface before or during desorption, reappears during absorption
 - Disproved models invoking surface Ti during dehydrogenation reaction

during dehydrogenation 80 -70 -Data Intensity (a.u.) 60 AI-OH AI-O 50 Al-H 40 Fit 30 -20 10 -80 78 76 74 72 70 Binding Energy (eV)

ST128

Four AI species detected by AP-XPS

Data supports proposed zipper mechanism Product phases Alanate Na

Chem. Rev. 2012, 112, 2164-2178

Proposed mechanisms are evaluated based on experimental data

Fuel Cell Technologies Office | 23

NREL and NCNR carries out neutron vibrational spectroscopy measurements on LiBH₄ infiltrated mesoporous carbon samples from UMSL

Can nanoconfinement in functionalized porous materials facilitate reversible hydrogen storage reactions?

- NVS show LiBH₄ infiltrated
- Shifting and broadening show there is an effect of confinement
- Degree of N-doping enhances BH₄ orientational mobilities

ST135, ST139

Accelerating rate of progress in the development of H₂ storage materials

Led an international inter-laboratory volumetric capacity H₂ adsorption measurement round-robin study

- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and "black box" errors
 - NREL gives direct feedback on data
- Determining a "natural" spread of data from instrument and operator variables

Promoting standard protocols for performing and reporting sorption measurements

Led an international inter-laboratory volumetric capacity H₂ adsorption measurement round-robin study

- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and "black box" errors
 - NREL gives direct feedback on data
- Determining a "natural" spread of data from instrument and operator variables

Promoting standard protocols for performing and reporting sorption measurements

Accomplishments: Lab Team Publications

- 32: Publications published or submitted for publication
- 4: Patents applications submitted
- 7: Manuscripts in preparation as of April 2017
- 2: Selected as cover features

B. C. Wood et al., *Advanced Materials Interfaces*, **2017**, *4*, 1600803.

E. S. Cho, J. J. Urban et al., Small, in press (2017).

The lab teams are producing high-value R&D and disseminating it to the R&D community

Accomplishments - HyMARC Project Highlights

Surface functionalized mesoporous carbons [HyMARC seedling—UMSL]

- Demonstrating ability of functionalized mesoporous carbons to facilitate reversible H₂ sorption reactions of hydride materials
- Prepared N-doped carbons and demonstrated infiltration of Al and B-based materials

Electrolyte Assisted Storage Reactions [HyMARC seedling—Liox Power]

- Improving reaction kinetics through use of electrolytes to facilitate atomic rearrangement and diffusion
- Have carried out initial screening studies of possible electrolytes

ST137 ST139

Accomplishments - HyMARC Project Highlights

"Graphene-wrapped" hydrides [HyMARC seedling—ANL]

- Encapsulating nanoparticles of complex hydrides with graphene to enhance reversibility and kinetics
- Demonstrated 9 wt% uptake in NaBH₄ systems with 80% regenerable release over 6 cycles

SEM of NaBH₄ nanoparticles wrapped in graphene

Magnesium boride etherates [HyMARC seedling—U. Hawaii]

- Improve reversibility of $Mg(BH_4)_2$ through formation of MgB₂-etherates
- **Demonstrated the formation of significant** amounts of β -Mg(BH₄)₂ at 300 °C

TGA of hydrogenated ball milled MgB₂-THF

ST138 ST136

Accomplishments - HyMARC Project Highlights

Novel boron-containing polymers [HyMARC seedling—Penn State]

- Developing novel boron containing porous polymers with higher H₂ binding energy
- Designed and synthesized two new classes of microporous polymers that contain boron.

High-capacity Hydrogen Storage Materials via Mechanochemistry [Ames Laboratory]

- Prepare high hydrogen capacity silicon-based borohydrides through mechanochemical methods
- Demonstrated several new materials with reversibility for part of their total capacity

"Li₂SiS₂(BH₄)₂" desorption measurements

ST140 ST119

Hydrogen Storage Materials Discovery (HyMARC)

- innovative, high-risk, high-payoff concepts for hydrogen storage materials
- project teams will be integrated into HyMARC as individual projects
- phase I Go/No-Go milestone must provide confidence that the proposed concept has reasonable potential to result in a hydrogen storage material capable of meeting automotive performance requirements

Areas of interest:

- novel, advanced <u>onboard-rechargeable</u> hydrogen storage materials
- physi- and chemisorption materials acceptable
- Only Phase I effort will be supported until Go/No-Go criteria is met, additional support will be contingent on meeting criteria

Accomplishments - Project Highlights

Computational Screening of MOFs with High Volumetric Density [U. Michigan]

- Identifying high-performing MOF's through screening of large structure databases
- Synthesized and tested several MOFs for their H₂ adsorption properties; IRMOF-20 and DUT-23(Co) both projected to surpass MOF-5 in system performance

Graphene-based carbon sorbents [Caltech]

- Design and synthesize porous graphene materials as high-capacity H₂ sorbents
- Demonstrated progress in preparing highsurface area carbons and inserting metal atoms to achieve higher heats of adsorption

SEM of high surface area graphene prepared from graphene oxide

ST122 ST120

- Developing and demonstrating low-cost processes for scale-up of alane (AIH₃) preparation
- Demonstrated improved crystallization and passivation process to produce high-purity, stable α -alane from chemical synthesis in batches of up to 200 grams (SRNL, Greenway)
- Demonstrated ability to yield α -alane from electrochemical synthesis, however further improvements are needed (Ardica, SRI)

XRD of crystalized α -alane from chemical (left) and electrochemical (right) syntheses

ST063 ST116

Engineering

Maintenance and Enhancements for HSECoE Models [NREL/PNNL/SRNL]

- Collaborative effort to maintain, update and enhance system models developed under HSECoE to provide a resource to hydrogen storage materials developers
- Posted models include metal hydride, chemical, and sorbent H₂ storage systems

Improved framework utility for materials researchers through new isotherm fitting

ST008

Online system models maintained and accessible to the research community

Materials-based H₂ Storage for UUV Applications [SRNL/US Navy/Ardica]

- Developing a materials-based H₂ storage system to extend UUV mission duration
- Preliminary analysis indicate ≥2 times longer mission capability over battery operation

Metal Hydride H₂ Storage for Forklift Applications [Hawaii H₂ Carriers/SRNL]

- <u>Small Business Voucher</u> project to demonstrate MHHS performance on a forklift under realistic conditions and its fast fill capabilities; perform preliminary DFMA analysis
- System originally designed and built under a SBIR program

ST134

Analysis

Accomplishments – Project Highlights

Hydrogen Storage System Performance [ANL] and Cost Analyses [SA/PNNL/ANL]

- Analyses are carried out to estimate system performance and cost of various technologies to help identify focus areas for the Program and to gauge technology development progress
- Cryo-compressed H₂ storage systems were evaluated for heavy duty fleet (bus) applications
- 500 bar, 40 kg H₂ capacity systems projected to be able to achieve 7.3 wt.% and 43 g/L storage densities with a cost of \$15/kWh

Analysis of a 40 kg H₂ capacity, 500 bar cryo-compressed system for bus applications

Techno-economic and performance analyses used to target key R&D areas

Fuel Cell Technologies Office | 35

INTERNATIONAL ACTIVITIES

IEA HIA Task 32
 Hydrogen-based
 Energy Storage

DOE – EERE - FCTO Hydrogen Storage Applied R&D

- Physical Storage
- Fiber Composites
- Materials-based Storage
- System Engineering
- Testing and Analysis

INDUSTRY

- U.S. DRIVE
 - **Tech teams:** > H₂ Storage
 - ➤ H₂ Delivery
 - > Codes & Standards
 - > Fuel Cells
 - > Fuel Pathways
 - > Vehicle Systems

TECHNOLOGY VALIDATION

National Collaborations (inter- and intra-agency efforts)

Energy Efficiency & Renewable Energy

Office of Science

Collaborating and leveraging of national and international activities

Physical Storage

- Focus is on developing technologies to lower the cost of 700 bar systems
- On-going projects on alternative materials and manufacturing processes
- Conformable tank designs may provide improved packaging onboard vehicles
- FOA topic on low-cost, alternative precursors for high-strength carbon fiber

Materials-based Storage

- Focus is to accelerate development of H₂ storage materials with targeted properties
- HyMARC core team performing foundational research to develop computational tools
- Rechargeable metal hydrides and hydrogen sorbents are primary materials areas
- First round of seedling projects underway and FOA topic to select second round
- Engineering activities leverage prior work to meet needs of high-value applications

FY 2017 FY 2018

- HyMARC team to prepare sorbent strategy prioritization
- First round of seedlings working with HyMARC
- Second round of seedlings to be selected
- Low-cost high-strength CF precursor projects to be selected

- First round of seedlings have go/no-go decisions
- Second round of seedlings working with HyMARC
- Low-cost high-strength CF precursor projects up and running

Contacts – H₂ Storage Team

Ned Stetson – Program Manager 202-586-9995 ned.stetson@ee.doe.gov

Jesse Adams

720-356-1421

jesse.adams@ee.doe.gov

Grace Ordaz

Now retired and enjoying life after DOE!

Zeric Hulvey

ORISE Fellow 202-586-1570

zeric.hulvey@hq.doe.gov

Vanessa Trejos

Support contractor

202-586-5153

vanessa.trejos@ee.doe.gov

Katie Randolph

720-356-1759

katie.randolph@ee.doe.gov

Bahman Habibzadeh

202-287-1657

bahman.habibzadeh@ee.doe.gov

John Gangloff

ORISE Fellow

202-586-7009

john.gangloff@ee.doe.gov

Chris Werth

Support contractor

240-562-1434

chris.werth@ee.doe.gov

BACK UP

HyMARC: Accelerating the discovery of breakthrough H₂ storage materials

HyMARC provides **capabilities** and **foundational understanding** of phenomena governing thermodynamics and kinetics for the development of solid-state hydrogen storage materials

HyMARC delivers community tools and capabilities:

- Computational models and databases for highthroughput materials screening
- New characterization tools and methods (surface, bulk, soft X-ray, synchrotron)
- Tailorable synthetic platforms for probing nanoscale phenomena

Website: hymarc.org

Lowest cost, but most difficult to package onboard a vehicle

Baseline system projections based on single tank design

Higher cost, but most easier to package onboard a vehicle

All current commercial FCEVs have dual tank designs