Hydrogen Storage System Modeling: Public Access, Maintenance, and Enhancements

P.I. – Matthew Thornton, NREL

Presenter – Kriston Brooks, PNNL

Additional Contributors:

- -- David Tamburello, SRNL
- -- Sam Sprik, NREL

Pacific Northwest

June 8, 2017

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Project ID# ST008 PNNL-SA-125680

Overview

Timeline

- Start: October 1, 2015
- End: September 30, 2018
- 50% Complete (as of 4/1/17)
 - o \$461,839 Spent (as of 4/1/17)

Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- E. Charging/Discharging Rates
- I. Dispensing Technology
- K. System Life-Cycle Assessment

Budget

- Total Project Funding: \$1,100,000
 - FY16 Funding: \$336,000
 - FY17 Funding: \$389,000
 - FY18 Funding: \$375,000

Partners

HSECOF

Collaborative effort to manage, update, and enhance hydrogen storage system models developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE).

- Transfer engineering development knowledge from HSECoE on to future materials research.
- Manage the **HSECoE model dissemination** web page.
- Manage, update, and enhance the modeling framework and the specific storage system models developed by the HSECoE.
- Develop models that will accept direct materials property inputs and can be measured by materials researchers.
- <u>Ultimate Goal</u>: Provide modeling tools that will be used by researchers to evaluate the performance their new materials in engineered systems relative to the DOE Technical Targets.

Barriers Addressed with Models

Barrier	Model Addressing Barrier
A. System Weight and Volume	System Estimator
B. System Cost	Tank Volume/Cost Model
C. Efficiency	Framework Model - On-Board Efficiency - Fuel Economy
E. Charging/Discharging Rates	Framework Model - Drive cycles
I. Dispensing Technology	Framework Model - Initial and Final System Conditions
K. System Life-Cycle Assessment	All Models

Challenge to Materials Researchers: Evaluating Material Relative to DOE Technical Targets

HSECoE

Original Framework Does Not Provide Entire Solution

DOE Technical Targets

Gravimetric & Volumetric Capacity Durability & Operability Operating Temperature and Pressure On-Board Efficiency Charging/Discharging Rates Startup Refueling

Approach

Focus: Improve Framework Utility for Materials Researchers

Refuelina

Approach Modeling Tools Available

SRNL	Evaluate Material Properties
PNNL	Estimate tank material, design and cost
SRNL SRNL	Tank Heat and Mass Transfer Models
UTRC/NREL	Estimate light-duty
UTRC/SRNL/NREL	vehicle performance for
PNNL/NREL	each storage system with four drive cycles
SRNL/NREL	
PNNL/SRNL	This Year's Work
SRNL	This Year's Work
	SRNL PNNL SRNL SRNL SRNL UTRC/NREL UTRC/SRNL/NREL PNNL/NREL SRNL/NREL PNNL/SRNL SRNL

HSEC_DE

Improved Website Access and Support

Improved Website Access and Support

Accomplishments and Progress Automated Isotherm Fitting Simplifies Model Use for Material Developers

Excess Adsorption Data Fitting Script

- Written in MathCad[™] and I/O in Microsoft Excel
- Push Button Solution
- Preliminary Model Evaluation:
 - Powder MOF-5
 - Compacted MOF-5 (0.32 g/cc, 0.4 g/cc, and 0.52 g/cc)
 - Activated Carbon

HSECoE

<u>[]</u>

Inputs Table Requires Adsorption Parameters in Excel[™]

_	_															-	
	ر	~ •						Data_fit.xlsx - Exce						David Tamburello			e ×
Fil	2	Home	nsert Draw	Page Layout Form	nulas Data Revie	w View ACROBAT	🖓 Tell	me what you want to do	,								유 Share
1	X	Cut	Arial	* 12 × A a		Wran Text	Conoral			Normal 2	Normal		⇒ 🚔	∑ AutoSum →	A	Ο	
] p.	Copy -	Zinai	IC A A	//	Er wiap lext	General		≠	- Standarz	Norma	<u> </u>		👽 Fill -	ZU	~	
Past	e		B I	U · 🗄 · 👌 · 🗛 ·	e = e e e	🚈 🙀 Merge & Center 🔹	\$ - 9	% 9 €.0 .00 →0	Conditional Formatting	Format as Bad	Good	Insert	Delete Format	🥒 Clear -	Sort &	Find &	
-		Format Painter		_					ronnaturig	lable -		Ŧ	*	Clear	Filter	Select -	
	Clipt	opard	6a	Font 5	Alignr	ment 5		Number -		Styles			Cells	Ed	iting		^
E2		×	$\checkmark f_X$														~
	Δ	в	C	D E	F G	н		K I	M	N O	P O	R	S T	L U L	v	w	2.4
1	т	P	nev				-			Interme	diate Calculation	is					— j-l
2	IKI	[Pa]	[mol/kgade]							(Do N	ot Touch/Alter)						
3	77.72	44608.85049	3.5224	40	06 = bulk density [ka_u/m ³]	1. simple measured mass / ve	olume	: Measured inputs			,						
4	77.71	182850.2601	8.9047	0.0019502	34 = Void volume (Vv) [m ³ /	/kg _{ade}], from Helium measure	ements	_									
5	77.70	444269.6026	14.6784	108.0	00 = Total number of data	points											
6	77.69	849420.8731	19.6613	297.	13 = maximum Temperatu	ire [K]					lloor	Innut					
8	77.68	1933839.3	25.1047	9520288.0	85 = maximum Pressure (F	Pal					User	Input	S.				
9	77.68	2707457.031	26.5198	44608.8	85 = minimum Pressure [P	Pa]						_'					
10	77.67	3592998.375	27.1681	10	00 = Limiting adsorption (n	n _{max}) [mol/kg _{ads}] initial guess		: Initial guesses		>	<u>_ Π_Δ</u>	Para	nmet	Arc			
11	77.67	4544419.27	27.2395	250	00 = Entropic factor (alpha 15 = Enthelpic factor (Boto	a) [J/mol] initial guess					- 0-7						
12	77.67	6978002.922	26.1013	10000000	00 = Pseudo-saturation Pr	ressure (P ₂) [Pa] initial quess	s						- 14				
14	77.67	8723687.387	24.6736	0.00	15 = Adsorption volume (V	/a) [m ³ /kg _{ads}] initial guess	-				- Bull	k den	SIIV				
15	87.87	83887.9812	3.0866		2 = Distribution paramete	er (m) set value											
16	87.89	285679.144	7.4577	27.23	95 = max n _{ex} [mol/kg _{ads}]												
17	87.90	613267.0717	11.8633	1000	00 = maximum number of i	iterations											
19	87.86	1540919.243	18.2688														
20	87.83	2077912.201	20.1862														
21	87.80	2826833.86	21.7845		naH2 = nmax*exp((-(R*	*T./(alpha+beta*T)).^m).*(log	g(P0./P)).^r	m); % [mol/kg]									
22	87.81	4640128 101	22.7677		nex = naH2 - c^Va												
24	87.78	5633444.785	23.3025														
25	87.77	7068438.378	22.9966		nex = (nmax*exp((-(R**	T./(alpha+beta*T)).^m).*(log	(P0./P)).^m	i)) - (c*Va); % [mol/kg]									_
26	87.76	8788741.684	22.3098														
28 1	91.86	1828814.316	2.3897														
29 1	92.06	2976473.618	3.4402														
30 1	92.29	4070214.081	4.2514														
32 1	92.73	6094630.051	5.3528			🔨 Usel	r in	DUIS:									
33 1	92.95	7038050.842	5.7586				••••	1- -									
34 1	93.14	8306292.725	6.0250				$\sim \sim \sim$	e Ade	nnt	ion Da	nta 📕						
36 2	97.12	653144.5951	0.1203				してい	2 7 U 2	JIPL		iia 🗖						
37 2	97.12	1450727.646	0.4231						•								
38 2	97.13	2353057.614	0.6774														
39 2	97.13	4999542.289	1.3285														
41 2	97.13	9038333.358	2.1181														
42	77.72	44608.85049	3.5224														
43	77.71	182850.2601	8.9047														
45	77.69	849420.8731	19.6613														
46	77.68	1363309.186	23.0384														
47	77.68	1933839.3	25.1047														
40	77.00	210/45/.031	20.0198														
-	>	Inputs Com	pFact Output	(±)				1	(•
Ready														III E H	-	1	-+ 100%
	~	_	-														

HSECoE

6

Output Table Provides DA Parameters and Error

	ر	¢ -								D	ata_fit.xlsx - Exce	el					as. A	David Tamburello	m –	9 X
File		Home	nsert Draw	Page Layo	ut Formula	is Data	Review	View	ACROBAT	🖓 Tell me wh	at you want to do	,						Astri Stranger		우 Share
r	80	Iut	Arial	* 10 *	A A =	= =	- »? ·	🚽 Wrap 1	lext	General	*	E J	Normal 2	Normal	Ţ	—	*	∑ AutoSum ·	AT 🔎)
Paste	: • <u> </u>	opy *	BI	<u>u</u> · H· 3	<u>b · A ·</u>	= = =	6)	😐 Merge	& Center 🔹	\$ - %	9 €.0 .00 9 € 00.	Conditional Format	as Bad	Good		Insert	Delete Form	at 🧳 Clear -	Sort & Find &	8.
÷	Index	ormat Paintei		East			Alignmen			Num	ner .	Tormatang Table	Chalme			*	Cells	Clear C	ling Solder	~
738	cripto			1211			Aightee						atyna				Sector 2	i bela	eng	
120			μ V	0			0				K			D	0		0	T	N	144
1	T	P	nev	c	n _{ex fit}	۲ %-diff	n _{ev fit}	%-diff		J	ĸ	L M	NU	۲	Q	R	8	1 0	v	
	[K]	[Pa]	[mol/kgara]	[mol/m ³]	[mol/kgada]	(nex-nex.m)	mol/kgadal	(n _{ex} -n _{ex,fit})				Fitted D	-A Coefficients					1		
2	77.7	2 4.46E+04	3.5224	69.08	3.9687	12.67%	4.6329	n _{ex} 31.52%				n _{max} =	144.95 mol/kg					- Eirci	. nac	C
4	77.7	1 1.83E+05	8.9047	283.82	9.1948	3.26%	9.8779	10.93%				alpha =	2031.12 J/mol						. pas	5
5	77.7	0 4.44E+05	14.6784	692.43	14.3791	2.04%	14.7557	0.53%	1	Maximum Error =	96.89%	Beta =	21.36 J/mol/K					- ·		
6 7	77.6	9 8.49E+00	93,0384	2153.39	18.9695	3.52%	18.9232	3.75%	Sumof	Average Error =	1 703951	P ₀ = 2	0.002425 m ³ /kg	< If V > V	NOTAS		NUU	- SOlu	tion	
8	77.6	8 1.93E+06	25.1047	3076.42	24.8102	1.17%	24.1463	3.82%	Guilton	oquares ciror -	1.100301	V ₂ =	0.001950 m ³ /kg		Use green	D-A Para	ameters			
9	77.6	8 2.71E+06	26.5198	4341.49	26.6295	0.41%	25.8219	2.63%							-					
10	77.6	7 3.59E+06	27.1681	5797.68	27.5537	1.42%	26.7666	1.48%				R =	8.3144621 J/mol/K							
12	77.6	7 5.54E+06	26.9409	8952.27	27.2944	1.31%	26.9523	0.04%				n _{max} =	93.09 mol/kgats							
13	77.6	7 6.98E+06	26.1013	11178.41	26.1168	0.06%	26.2737	0.66%				alpha =	2482.89 J/mol							
14	77.6	7 8.72E+06 7 8.39E+04	24.6736	13685.34	24.2835	1.58%	25.0911	1.69%	'	Average Error =	54.74% 7 38%	Beta =	16.36 J/mol/K	-				_	_	
16	87.8	9 2.86E+05	7.4577	391.79	8.0537	7.99%	8.5315	14.40%	Surn of	Squares Error =	1.97285	V. =	0.001658 m ³ /kg					Secon	d na	66
17	87.9	0 6.13E+05	11.8633	842.99	12.1556	2.46%	12.4766	5.17%				V., =	0.001950 m ³ /kg _{ads}				_		ս բն	33
18	87.8	9 1.04E+06	15.5307	1432.13	15.5220	0.06%	15.6491	0.76%											5	
19	87.8	6 1.54E+06 3 2.08E+06	i 18.2688 i 20.1862	2131.44 2882.79	18.1560	0.62%	18.1194	0.82%	n	aH2 = nmax*exp((-(R*T./(alpha+b	eta*T)).^m).*(log(P0.	/P)).^m): % [mol/ka]				- 5	SOIULIO	n	
21	87.8	0 2.83E+06	21.7845	3933.11	21.7895	0.02%	21.6022	0.84%		and more or pro-	((re rated and rate	ota 17): 11): (tog(: 0.	, , , , , , , , , , , , , , , , , , ,							
22	87.8	1 3.69E+06	22.7677	5145.35	22.8871	0.52%	22.7528	0.07%	n	ex = naH2 - c*Va										
24	87.7	8 5.63E+06	23.3025	7806.64	23.4691	0.72%	23.7053	1.73%	n	ex = (nmax*exp((-	(R*T./(alpha+bei	ta*T)).^m).*(log(P0./	P)).^m)) - (c*Va); % [n	nol/kg]						
25	87.7	7 7.07E+06	22.9966	9697.14	22.9897	0.03%	23.6226	2.72%												
20	191.7	6 8.79E+06 0 6.37E+05	1.0256	397.97	0.7161	30.17%	0.5262	48.70%												
28	191.8	6 1.83E+06	2.3897	1132.25	2.2121	7.43%	1.8974	20.60%								_	_			
29 30	192.0	6 2.98E+06 9 4.07E+06	3.4402 4.2514	1826.17 2474 94	3.3295	3.22%	3.0313	11.89% 7.32%				Fir	nal Cal	ICUI2	atin	n F	Res	ults:		
31	192.5	1 5.11E+06	4.8690	3079.33	4.7941	1.54%	4.6747	3.99%									.00	anco.		
32	192.7	3 6.09E+06	5.3528	3642.90	5.2795	1.37%	5.2767	1.42%				\sim	\riaina		000		۸da	orntia	n	
34	192.9	4 8.31E+06	6.0250	4172.51 4872.13	6.0718	0.78%	6.3711	5.74%				- C	луша		CE:	221	Aus	υιμιο	11	
35	193.3	5 9.52E+06	6.1203	5526.07	6.3725	4.12%	6.8513	11.94%				~		1	-	_			1 ¹ ·	
36	297.1	2 6.53E+05 2 1.45E+06	0.1965	263.38	-0.1485	0.00%	-0.2267	0.00%				— - C	alcula	ated	ΕX	ce	ss A	Adsorr	otion	
38	297.1	3 2.35E+06	0.6774	939.43	0.3004	55.66%	-0.0926	0.00%							-/~					
39	297.1	3 5.00E+06	1.3285	1965.31	1.2237	7.88%	0.6012	54.74%))							_
40	297.1	3 7.01E+08 3 9.04E+08	2.1181	3470.04	2.4220	0.48% 14.35%	1.2013	31.92% 15.16%				(72	-/							
42	77.7	2 4.46E+04	3.5224	69.08	3.9687	12.67%	4.6329	31.52%				Ì n				-	\			
43	77.7	1 1.83E+05	8.9047	283.82	9.1948	3.26%	9.8779	10.93%				- %	o-aiffei	renc	ce (XΖ)			
45	77.6	9 8.49E+08	19.6613	1331.96	18.9695	3.52%	18.9232	3.75%							- (/			
46	77.6	8 1.36E+06	23.0384	2153.39	22.4477	2.56%	22.0309	4.37%												
4/	//.6	8 1.93E+06	Dispersion 25.1047	3076.42	24.8102	1.17%	24.1463	3.82%				4								
Rearth:		inputs Coll	output								: •	•								+ 100%
reality	~				_															1 10.05
	O I		C C P3	x 🛛 🗤 🖬	P 🗐 🛛 🛛 🔤	1											~ *	± 100 /∂ (×	alla ===== 11·2	0 AM -

Accomplishments and Progress Output Table Provides DA Parameters and Error

	ن	<i>∂</i> =								D	ata_fit.xlsx - Excel				David Tamburello	b –	e ×
File	н	ome In	isert Draw	Page Layo	out Formula	is Dat	ta Review	View	ACROBA	T 🖓 Tell me wi							유 Share
4	🔏 Cu	t	Arial	x 10 x	A		20 m -	Wran	Tout	Conoral			Normal 2		∑ AutoSum →		
	🗋 🖻 Cop	py -	751101	10	M A	-	= "	Ek wish	TEAL	General			Normar2		🚽 Fill -		
Paste		rmat Dainter	B I	<u>U</u> • ⊞ • <u>≤</u>	<u>ъ</u> - <u>А</u> - 🔳	= = -	÷ •	🚔 Merge	e & Center 👎	\$ - %	9 €.0 .00 •.0 →.0	Forma	at as I Bad	Good Form	IT -	Filter - Select -	
·	Clinhoar	d a		Ennt	1-		Aligome			Num	haar	Fr	rore C	alculated for	E-F	ling	~
-	cripboar			PDIIL			Angrimes	11.		- Num	ue:		1013 0		EUI	ing	
128			√ J×									<u>—</u> сі.	cot noc	a colution			Ŷ
	A T	B	C	D	E	F	G	H		J	K I		si pas	ss solution	U	V	w ^
1		r 19-1	Tex .		Tex,fit	(ner-nerm)	ex,fit	(nex-nex.tr)				F :44 - 4	-				
2	[n]	[Paj	[moi/kg _{ads}]	[mol/m ²]	[moi/kg _{ads}]	n _{ex}	[moi/kg _{ads}]	n _{ex}				Fitted	D-A Coefficients	5			
3	77.72	4.46E+04	3.5224	69.08	3.9687	3.26%	4.6329	31.52%				n _{max} =	144.95 mol/kga 2031.12 l/mol	ads			
5	77.70	4.44E+05	14.6784	692.43	14.3791	2.04%	14.7557	0.53%	1	Maximum Error =	96.89%	Beta =	21.36 J/mol/K	C			
6	77.69	8.49E+05	19.6613	1331.96	18.9695	3.52%	18.9232	3.75%		Average Error =	0.52%	P ₀ =	2.1269E+09 Pa				
7	77.68	1.36E+06	23.0384	2153.39	22.4477	2.56%	22.0309	4.37%	Sum of	Squares Error =	1.703951	V. =	0.002425 m ³ /kg _{ad}	<pre>< If V_a > V_v, NOT A SOLUTION!!!!</pre>			
8	77.68	1.93E+06	25.1047	3076.42	24.8102	1.17%	24.1463	3.82%				V _v =	0.001950 m ³ /kg _{ad}	Use green D-A Parameters			
10	77.67	2.71E+06 3.59E+06	26.5198	4341.49	20.6295	1.42%	25.8219	2.63%				R =	8.3144621 J/mol/K	ç .			
11	77.67	4.54E+06	27.2395	7354.46	27.7071	1.72%	27.0877	0.56%									
12	77.67	5.54E+06	26.9409	8952.27	27.2944	1.31%	26.9523	0.04%				n _{max} =	93.09 mol/kg _a	ads			
13	77.67	6.98E+06 8.72E+06	26.1013	11178.41	26.1168	0.06%	26.2737	0.66%		Maximum Error =	54 74%	alpha = Beta =	2482.89 J/mol 16.36 J/mol/K	s and the second s			
15	87.87	8.39E+04	3.0866	114.89	3.7041	20.01%	4.1610	34.81%		Average Error =	7.38%	P ₀ =	1.0056E+09 Pa				
16	87.89	2.86E+05	7.4577	391.79	8.0537	7.99%	8.5315	14.40%	Sum of	Squares Error =	1.97285	V., =	0.001658 m ³ /kg _{ad}	8			
17	87.90	6.13E+05	11.8633	842.99	12.1556	2.46%	12.4766	5.17%			K	V., =	0.001950 m ³ /kg _{ad}	is and the second se			
18	87.89	1.04E+06	15.5307	1432.13	15.5220	0.06%	15.6491	0.76%									
20	87.83	2.08E+06	20.1862	2882.79	20.0711	0.57%	19.9309	1.26%	n	aH2 = nmax*exp((-(R*T./(alpha+be	_					
21	87.80	2.83E+06	21.7845	3933.11	21.7895	0.02%	21.6022	0.84%				⊢rrc	ors Ca	Iculated for			
22	87.81	3.69E+06	22.7677	5145.35 6454.62	22.8871	0.52%	22.7528	0.07%	n	ex = naH2 - c*Va							
24	87.78	5.63E+06	23.3025	7806.64	23.4691	0.72%	23.7053	1.73%	n	ex = (nmax*exp((-(R*T./(alpha+bet	500	and n	and adjution			
25	87.77	7.07E+06	22.9966	9697.14	22.9897	0.03%	23.6226	2.72%				Sec	onu pi				
20	191.70	6.37E+05	1.0256	11838.49	0.7161	30.17%	23.0933	3.51%					•				
28	191.86	1.83E+06	2.3897	1132.25	2.2121	7.43%	1.8974	20.60%									
29	192.06	2.98E+06	3.4402	1826.17	3.3295	3.22%	3.0313	11.89%									
31	192.29	5.11E+06	4.8690	3079.33	4.7941	1.54%	4.6747	3,99%									
32	192.73	6.09E+06	5.3528	3642.90	5.2795	1.37%	5.2767	1.42%									
33	192.95	7.04E+06 8.31E+06	5.7586	4172.51	5.6598	1.72%	5.7802	0.37%									
35	193.35	9.52E+06	6.1203	5526.07	6.3725	4.12%	6.8513	11.94%									
36	297.12	6.53E+05	0.1965	263.38	-0.1485	0.00%	-0.2267	0.00%									
37	297.12	1.45E+06 2.35E+06	0.4231	582.26	0.0132	96.89% 55.66%	-0.2301	0.00%									
39	297.13	5.00E+06	1.3285	1965.31	1.2237	7.88%	0.6012	54.74%									
40	297.13	7.01E+06	1.7645	2723.86	1.8611	5.48%	1.2013	31.92%									
41	297.13	9.04E+06 4.46E+04	3.5224	69.08	3.9687	14.30%	4.6329	31.52%									
43	77.71	1.83E+05	8.9047	283.82	9.1948	3.26%	9.8779	10.93%									
44	77.70	4.44E+05	14.6784	692.43	14.3791	2.04%	14.7557	0.53%									
46	77.68	1.36E+06	23.0384	2153.39	22.4477	2.56%	22.0309	4.37%									
47	77.68	1.93E+06	25.1047	3076.42	24.8102	1.17%	24.1463	3.82%									v
	Inp	outs Com	pFact Output	÷													Þ
Ready																	+ 100%
	0 🗆	: 👝 🗹	e 💿 💼	xa wa	F 1 05 1	M'								~ #	• • • <i>•</i>	A = 11:20 A	M E
	0.													÷.	104 51		التعديد

HSECoE

E

Isotherm Fitting Results

- All fitting results performed had a sum of squares error less than 5.0
- \circ All but one had a sum of squares error of less than 2.0
- Sample Result: 0.4 g/cc Compacted MOF-5

Sizing Routine Estimates All Input Parameters Needed for Framework

- Benefit
 - Availability (No Simulink license required)
 - Uses inputs measured by materials researchers to calculate Framework parameters
 - Estimates system mass and volume for preliminary comparison to the DOE Technical Targets
 - Can be run separate or can be run as a GUI within the framework

Executable Sizing Routine – Chemical Hydrogen Input File

X	5-0	» - l <u>i</u> l - ;	;			input_AB.xlsx - Excel			_					?	T -	a X
F	ILE HOME	INSERT	PAGE LAYOUT	ORMULAS D	DATA REVIEW VI	EW ACROBAT Tean	n							Bro	ooks, Kriston P	- 0
ľ	Arial		10 · A A =	≡ _ %.	📴 Wrap Text	General *	≠			← ■■			∑ AutoSum →	Z Z ▼		
Pa	ste 💉 B	I <u>U</u> -	• <u>•</u> • <u>•</u> • =	≡≡ ∉∄	E 🗄 Merge & Center	• \$ • % • .00 .00	Conditional For Formatting •	ormatas Table = S	Cell Styles •	Insert •	Delete •	Format *	✓ Clear ▼	Sort & Filter ∗	Find & Select ▼	
Clij	board 🕞	Font	t G	Alig	Inment	Га Number Га	Sty	yles			Cells		Ed	ting		^
	A	В	С			D			E		F	G	Н		J	A
1		Values	Units	Com	ments											
2	ExoEndo	1		Exothermic/E	Endotheric Flag (Exo = 1	1, Endo = 0)		_	1							
3	Kinetic Model	1		Kinetic Model	I Flag (Avrami Kinetics	= 1, nth Order Kinetics = 2)									
4	MW CH	30.8	g/mol	molecular wei	ight Chemical Hydrogen	Material	,									
5	slurry	1		Fluid Propertie	ies Flag (Slurry (1) or Li	quid (0))										
6	x H2	0.152		Wt Fraction H	12 in the CHS Material											
7	n rxn	1		Number of Re	eactions to Model (1 or 2	2)										
8	DH rxn 1	-17981	J/mol H2	Reaction Enth	halpy Rxn 1 (negative=e	exothermic)										
9	Beta1	2.355	mol H2/mol CH	Molar Ratio H	12 maximum for CH mat	terial Rxn 1				D	02	ctic	n Dai	ram	natar	'C
10	A1	244	sec-1	Pre-exponenti	ial factor for Rxn 1				\geq	17	ca		лга	an		3
11	E1	29900	J/mol H2	Activation Ene	ergy for Rxn 1											
12	n1	3.1		Exponent for /	Avrami or Reaction Ord	er for Rxn 1				W	eic	nht	Fract	'inn		
13	DH rxn 2	0	J/mol H2	Reaction Enth	halpy Rxn 2 (negative=e	exothermic)				• •	0.5	9	1140		2 ייי	
14	Beta2	0	mol H2/mol CH	Molar Ratio H	2 maximum for CH mat	terial Rxn 2										
15	A2	0	sec-1	Pre-exponenti	ial factor for Rxn 2											
16	E2	0	J/mol H2	Activation Ene	ergy for Rxn 2											
17	n2	1		Exponent for /	Avrami or Reaction Ord	er for Rxn 2										
18	x inert	0.5		Weight fractio	on inert with CHS Mater	ial to Slurry			J							
19	Cp CH	2694	J/kg/K	Heat Capacity	y CHS Material				۱							
20	Ċp_i	1846	J/kg/K	Heat Capacity	y inert slurrying agent											
21	Срр	774	J/kg/K	Heat Capacity	y CHS Material Product					ΞЦ	دما	ht M	'anar	itv <i>i</i> .	የ . ቦር	neitv
22	rho CH	780	kg/m3	Density CHS	Material				\bigcap				apac	ιιγ		JISILY
23	rho i	1000	kg/m3	Density inert	slurrying agent								-			
24	rho P	1640	kg/m3	Density CHS	Material Product				,							
25	ppm_imp	500	ppm	Concentration	n of impurity 1				۱							
26	A imp	0.1	g impurity/g adsorber	t Adsorbent ma	aximum loading impurity	/ 1										
27	MW_imp	17	g/mol	molecular wei	ight impurity 1					Ir	nn	rit	linn			
28	ppm_imp2	2000	ppm	Concentration	n of impurity 2				\bigcap		ΠP	นทเ	les			
29	A_imp2	0.35	g impurity/g adsorber	t Adsorbent ma	aximum loading impurity	/ 2					•					
30	MW_imp2	80.5	g/mol	molecular wei	ight impurity 2				J							
31	Useable H2	5.6	kg	Mass of usab	ble hydrogen required				7							
32	Power	40	kŴ	Average Hydro	ogen Storage H2 Produ	ction Required										
33	Pset	25		Ballast Tank F	Pressure Initial Conditio	n and Setpoint			\geq	- /	•		1:	γ		
34	Q_heater	8000		Reactor heate	er per length				ſ	— (JD	era	itina (JOr	naitio	ns
35	Tmax	400	°C	Maximum acc	ceptable reactor temper	ature					- 1-	J. U				
36									_							
37																

HSECoE

6

Executable Sizing Routine – Chemical Hydrogen Output

X	🔒 🕤 👌	- I <u>db</u> + ∓				Output.xlsx	- Excel								? 📧 -	- 8 ×	
l e	ILE HOME	INSERT	PAGE LAYOUT	FORMULAS DATA REV.	IEW VIEW	ACROBAT	Team								Brooks, Krist	on P 🝷 📿	
12				= _ _ ∞. =					ETT.				∑ AutoSur	m • A.			
	Calibri	* .	II · A A		ext Ge	neral	*	I ≠	- Office	i i			👽 Fill -	ΖŸ			
Pa	ste 💉 B I	<u>U</u> - 🖽 -	- <u>A</u> -	≡ ≡ ≡ 🔄 🔁 🖽 Merge	& Center 🝷 💲	- % ,	€.0 .00 .00 →.0	Conditional Formatting •	Format as Table • S	Cell Ir Styles =	isert De ↓	lete Format	Clear 🕶	Sort à Filter	& Find &		
Cli	pboard 🕞	Font	G.	Alignment	G.	Number	5	S	Styles	Styles	C	ells		Editing	Sciect	~	
	A	В	С	D		E	F	G	Н	I	J	K	L	M	N	(🔺	
1	Name	Value	Units	Description													
2			System Ma	s and Volume						1							
3	TotalMass	218.8343	kg	Total Estimated System Mas	S						c			N / -		0 \/_	1
4	TotalVolume	236.6091	L	Total Estimated System Volu	ume						- 2	SVSI	em	ivia	SS d	& VC	lume
5	DOE_Mass_Targe	et 0.02559	kg H2/kg sys	DOE Gravimetric Target 2020)							·) - ·	••••				
7	DOE_VOI_Target	0.023008	Framowork I	DUE Volumetric Target 2020						\leq							
0	Poactorl ongth	1 574	Framework in	Postor Longth													
9	Vhallast	0.092683	m3	Ballast Tank Volume													
10	MFeed	128,1465	kø	Mass Chemical Hydride Reg	uired											1 11 1	
11	x CH	0.5	kg/kg	Fraction chemical Hydride in	Slurry or Liqui	đ					- L		Dec	ian	Da	rom	atarc
12	LigRadLength	3.671969	m	Slurry Radiator Length	rolan) or ziqui	-				\geq	<u> </u>	١СУ	Des	ngr	Γσ	anan	C(C) S
13	GasRadLength	0.961873	m	Hydrogen Gas Radiator Leng	th					ſ		•		_			
14	ppm imp	0	ppm	Impurity 1 Conc.							1	iseo	i in l	⊢ra	me	work	(
15	ppm imp	0	ppm	Impurity 2 Conc.							Ŭ						•
16	Recup	1		Recuperator Flag (1 = endot	hermic)												
17	RecupLength	1.78423	m	Recuperator Length (if endo	thermic)					2							
18			Intermed	liate Values								ntor	\sim	4:04	$\sim 1/$	ماريم	•
19	Startup Time	187.6743	sec	Time to Reach 30% Conversi	on							nier	me	ມaເ	ev	alue	5
20		Fran	mework Values	: Reactor Parameters					_	\prec							
21	reactparam.A1	1.2E+10	1/sec	Arrhenius Parameter Reacti	on 1												
22	reactparam.E1	102200	J/mol	Activation Energy Reaction	L												
23	reactparam.n1,	2		Exponential Factor Reaction	1												
24	reactparam.beta	1 1.5	mol H2/mol Cl	Ratio H2 to CH Produced Rea	action 1												
25	reactparam.DH1	-7600	J/mol	Reaction 1 Enthalpy													
26	reactparam.A2	0	1/sec	Arrhenius Parameter Reacti	on 2												
27	reactparam.E2	1000	J/mol,	Activation Energy Reaction 2	2												
28	reactparam.n2	1		Exponential Factor Reaction	Z						1)tha	r Er	'am		ork \	
29	reactparam.peta	2 0	Inol H2/mol	Poaction 2 Enthalow	iction 2					L				all			values
21	reactparam.DH2	(n 1	J/moi	Type of Reaction (1=Ayrami	2-nth Ordor											\frown	
32	reactparam D	0.0444	 m	Reactor Diameter	z-min order						- F	-or e	eacr	า บ	nit (Upe	ration
33	reactparam thick	0.0017	m	Reactor Wall Thickness								••••		. •	••••		
34	reactparam.rhos	lui 1244.147	kg/m3	Density Slurry													
35	reactparam.MW	30	g/mol	Chemical Hydride Molecular	Weight												
36	reactparam.Cpslu	uri 1423	J/kg/K	Heat Capacity Slurry													
37	reactparam.rhom	ne 8000	kg/m3	Density Steel													
38	reactparam.Cpm	et 470	J/kg/K	Heat Capacity Steel													
39	reactparam.CpH2	14400	J/kg/K	Heat Capacity H2													
40		Framev	vork Values: Li	quid Radiator Parameters						7							
41	churnwood of LIVin	0.0005	Wilmalk	Clurps Radiator Diamotor													
	She	eti (
RE	ADY .			Jutout D	rovid		all r	ara	me	tore	e n	aad	h hal	for	full	Cho	mical

utput: Provides all parameters needed for full Chemical Hydrogen storage system.

Executable Sizing Routine – Representative Results for CHS

Calculated System Parameter	Ammonia Borane	Alane	CBN*
Total System Mass (kg)	133	188	117
Total System Volume (L)	146	161	135
System Gravimetric Capacity	0.042	0.029	0.048
(kg H ₂ /kg system)			
System Volumetric Capacity	0.038	0.035	0.041
(kg H ₂ /L system)			
Reactor Length (m)	0.64	1.28	2.3
Ballast Tank Volume (L)	14	22	32
Mass Chemical Hydride (kg)	77	128	70
Fraction Chemical Hydride	0.5	0.5	1
Liquid Radiator Length (m)	2.4	1.6	0.9
(3 tubes)			
Gas Radiator Length (m) (1 tube)	1.2	1.0	1.4
Recuperator Length (m) (3 tubes)	0	3.22	0.8
Startup Temperature (°C)	178	202	279
Ballast Time (s)	75	117	176

В

Accomplishments and Progress Executable Sizing Routine – Adsorbent Input File

	5 ⊘	£ · · 2		input.star - Excel				A 0	avid Tamburello	œ −	o ×
File	Home	nsert Draw Page	Layout Formula	Data Review View ACROBAT Q Tell me what you want to do							A. Share
Paste	👗 Cut	Arial B I U	• 10 • A A	= = ⇒ ⊕ Wrap Text General . Image: Second and a seco	Good Explana	Neutral Input	E	sert Delete Format	∑ AutoSum	Sort & Fin) i& ktr
÷	 Format Paint Clipboard 	G Fi	ont	6 Alignment 6 Number 6 Stries	5			Cells	Clear *	Editing	~
D31	• 1 2	× v fr		a i regenion a i rement a i egue						turing.	~
	Δ	в	C	D	F	F	G	н	1		K *
1		Values	Units	Comments	-		Ū			Ū	
2	Pi	1.00E+07 F	Pa	Initial/Full tank pressure	٦						
3	Pf	5.00E+05 F	Pa	Initial/Full tank temperature	L	One	ratio		ndit	iana	
4	Ti	80 8	<	Final/Empty tank pressure		Ope	alli	ig Co	nait	IONS	
5	Tf	160 H	<	Final/Empty tank temperature	J			Ŭ			
6	H2usable	5.6	(g _{H2}	Target usable hydrogen							
7	type_Ads	1		Type of adsorbent/HX: 1) Powder/HexCell, 2) Compact/MATI	٦						
8	alpha	2895.12802	J/mol _{H2}	D.A. Parameter Enthalpic contribution to the characeristic free energy of adsorption							
9	beta	15.29117	J/mol _{H2} /K	D.A. Parameter Entropic contribution to the characeristic free energy of adsorption		Ads	orbe	nt co	ndit	ion a	and
10	m	2		D.A. Parameter Exponential constant for adsolute adsorption							
11	nmax	96.43165 r	nol _{H2} /kg _{Ads}	D.A. Parameter Maximum H2 loading of the entire adsorption volume	\leq	Dub	oinin-	Astal	۲ho	/ (D	A)
12	P0	1.39E+09 F	Pa	D.A. Parameter Pseodo-saturation pressure (pressure of the gas phase)		Dub	, , , , , , , ,			, (D.	/ /
13	rho_ads	130	(g _{Ads} /m ³	D.A. Parameter Bulk Density of the MOF-5		Par	amet	ore			
14	Va	0.00169712 r	m ³ /kg _{Ads}	D.A. Parameter Adsorbed volume per mass of adsorbent		i ai	annei	.013			
15	Vv	0.00725 r	m ³ /kg _{Ads}	D.A. Parameter Void volume per mass of adsorbent							
16	k	0.3 \	N/m/K	Thermal conductivity of the adsorbent		Tho	rmal	nron	ortic		
17	Ср	780 .	J/kg/K	Specific Heat of the adsorbent	\int	ITTE	IIIIdi	prop		52	
18	Ads_Cost	11.8 \$	kg _{Ads}	Projected cost of the adsorbent per unit mass				· ·			
19	th_ins	0.026 r	n	Pressure vessel insulation thickness	ר						
20	th_LN2	0 r	n	Pressure vessel LN2 chiller channel thickness (minimum value of 1/4" if pressent)		_					
21	ТТуре	4		Type of pressure vessel:		Pres	ssure	e ves	sel (desid	n
22				0 = Aluminum Type 1	\leq	1100	oour				J.,
23				1 = 316 Stainless Steel Type 1		con	eidar	ration	c		
24				2 = Aluminum + CF Type 3		COL	21001	alion	3		
25				3 = SS + CF Type 3							11
20				4 - Flasuc + OF Type 4							
28											
				Operating Condition Limits: 5.0 bar	< P	2 < 70)0 ba	ar			

40 K < T < 400 K

Calculations should be limited to the adsorbent excess adsorption data range

Accomplishments and Progress Executable Sizing Routine – Adsorbent Output File

HSECoE

<u>[]</u>

5	8 * •		🛕 David Tamburelo 🛛 🗠 🗆 🔀
File Ho	me Insert Draw Page Layout	Formulas Data Review View ACROBAT 💭 Tell me what you want to do	🤤 Share
A1 ·	X V fr Name		
A	B C	D	F G H I J K L M N
1 Name	Value Units Output values	Description	
3 H2stored	5.714285714 kg H2	Total hydrogen stored	
4 System_mass	113.3458877 kg	Total H2 Storage System Mass	
5 System_vol	281.2933333 L	Total H2 Storage System Volume	Ourstand Issuel sutants
6 System_Cost	2664.635557 \$	Total Projected H2 Storage System Cost	System level outputs
7 Grav_Cap	0.049406292 g_H2/g_sys	System-based gravimetric capacity	e yetern lever eutpate
8 Vol_Cap	19.9080438 g_H2/L_Sys	System-based volumetric capacity Overall system rank based on mass volume, and cost (better systems have bisher values"	
10	Input values	overall system rank based on mass, volume, and cost (berter systems have nigher values	
11 Pi	100 bar	Initial/Full tank pressure	
12 Ti	80 K	Initial/Full tank temperature	
13 Pf	5.5 bar	Final/Empty tank pressure	
14 TF	160 K	Final/Empty tank temperature	
15 H2usable	5.6 kg_H2	Target usable hydrogen	
to type_Ads	1 2895 12802 1/mol H2	Type of adsorbent/fix: 1) rowder/HexCell, 2) Compact/MATI	
18 beta	15.29117 J/mol H2/K	D.A. Parameter	
19 m	2	D.A. Parameter Exponential constant for adsolute adsorption	
20 nmax	96.43165 mol_H2/kg_ads	D.A. Parameter Maximum H2 loading of the entire adsorption volume	Depend of the coloulation inputs
21 PO	1387070830 Pa	D.A. Parameter Psepdo-saturation pressure (pressure of the gas phase)	
22 rho_ads	130 kg_ads/m^3	D.A. Parameter Bulk Density of the MOF-5	
23 Va	0.00169712 m^3/kg_ads	D.A. Parameter Adsorbed volume per mass of adsorbent	
24 Vv	0.00725 m^3/kg_ads	D.A. Parameter – Void volume per mass of adsorbent	
26 Cp	780 1/kg/K	Specific Heat of the adsorbent	
27 Ads Cost	11.8 S/kg ads	Projected cost of the adsorbent per unit mass	
8 th ins	0.026 m	Pressure vessel insulation thickness	
29 th_LN2	0 m	Pressure vessel LN2 chiller channel thickness (minimum value of 1/4" if pressent)	
30 TType	4	Type of pressure vessel: 0 = Type 1 Al, 1 = Type 1 SS, 2 = Type 3 Al+CF, 3 = Type 3 SS+CF, 4 = Type 4 Plastic+CF	
31	Intermediate Calculations		
2 ntotal	0.259938979 kg_H2/kg_ads	Mass of Hz stored per mass of adsorbent Mass of the internal Heat Exchanger	
4 vol inHX	3.750475553 L	Volume of the internal Heat Exchanger	
35 Cost_inHX	67.59294565 \$	Projected cost of the internal Heat Exchanger	
6 mass_ads	21.98318138 kg_ads	Mass of the adsorbent material	
87 vol_ads	174.035335 L	Volume of the adsorbent material	
88 Cost_ads	11.8 \$	Projected cost of the adsorbent material	
59 m_H2	5./14285/14 kg_H2	I of all mass of hydrogen stored	
11 m H2 gas	0 kg H2	Mass of hydrogen associated with the adsorbent Mass of hydrogen in the free space (outside of the adsorbent)	Intermediate calculation results:
12 vol gas	9 L	Volume of gas in the free space (outside of the adsorbent)	
13 Cost_H2	15.42857143 \$	Projected cost of the hydrogen	
14 mass_tank	58.79413661 kg	Total mass of the tank (pressure vessel, insulation, etc.)	Droccure vessel description
15 vol_tank	264.7503333 L	Outer volume of the tank	
to Cost_tank	1330.759166 5	Projected cost of the tank	\rightarrow
17 N_tank	1 1800 328516 mm	Outer length of the tank	Internal beat exchanger
19 D tank	446.2418486 mm	Outer diameter of the tank	
50 L-to-D	4.03442331	Length-to-Diameter ratio of the outside of the tank	5
51 L_cyl	1477.74755 mm	Length of the cylinder section of the tank	bydrogon storago brookdow
52 L_int	1725.069316 mm	Internal length of the tank	
53 D_int	370.9826486 mm	Internal diameter of the tank	, , , , , , , , , , , , , , , , , , , ,
64 K1	185.4913243 mm	Radius of the tank interior	
6 83	107.9213243 mm	Outer radius of the tank pressure vessel (type 1) of the pressure vessel liner (type 3 of 4) Outer radius of the tank pressure vessel (rathon fiber of type 3 or 4)	
57 R4	197.7209243 mm	Outer radius of the LN2 chilling channels (if pressent)	
58 R5	221.1209243 mm	Outer radius of the tank insulation	
59 R6	223.1209243 mm	Outer radius of the outer shell of the tank (outer shell thickness pre-set to 2mm)	
50 m_BOP	16.728 kg	Mass of the balance of plant of the H2 storage system	

Output: Details needed for a full adsorbent H_2 storage system.

Accomplishments and Progress Executable Sizing Routine – Representative Results for ADS

	Gravimetric Capacity [g _{н2} /g _{sys}]	Volumetric Capacity [g _{H2} /L _{sys}]	Source
MOF-5 Powder [130 kg/m ³]	0.0338 g _{H2} /g _{sys}	18.6 g _{H2} /L _{sys}	HSECoE
MOF-5 Compact [406 kg/m³]	0.0314 g _{H2} /g _{sys}	21.3 g _{H2} /L _{sys}	HSECoE
DUT-23 (Co) Powder* [200 kg/m³]	0.0348 g _{H2} /g _{sys}	20.7 g _{H2} /L _{sys}	Ford / University of Michigan
IRMOF-20 Powder* [200 kg/m ³]	0.0341 g _{H2} /g _{sys}	20.3 g _{H2} /L _{sys}	Ford / University of Michigan
MOF-5 Powder [200 kg/m ³]	0.0332 g _{H2} /g _{sys}	19.6 g _{H2} /L _{sys}	HSECoE

*Special thanks to Ford and the University of Michigan for sharing their data

System Design Assumptions:

- Operating Conditions: 80 K, 100 bar to 160 K, 5 bar
- 5.6 kg of usable hydrogen (~5.714 kg of actual hydrogen storage)
- Type 1 aluminum pressure vessel
- \circ LN₂ pressure vessel chiller channel thickness of 9.525 mm
- Uniform insulation thickness of 23 mm, with a 2 mm outer aluminum shell

Accomplishments and Progress GUI Improvements: Storage System Design Tool Incorporated into Framework

HSECOE

AD Model Improvements: Expand Model Capability

Adsorbent model updates:

- Improved hydrogen properties calculations for faster time steps / improved solution convergence.
- Validated the adsorbent model estimates using powder MOF-5 and 0.32 g/cc, 0.4 g/cc, and 0.52 g/cc compacted MOF-5 excess adsorption.
- System model updates:

HSECOE

- Updated tank design controls to include Type 1, Type 3, and Type 4 pressure vessels.
- Included insulation thickness control to the design space to account for cryogenic to room temperature operation.

CH Model Updates/Improvements (Kriston)

- Remove unneeded complexity to decrease model computation time
 - Radiator, Recuperator, Ballast Tank
- Added nth order reaction kinetics with two series reactions as an alternative to two parallel Avrami reactions

• $A \rightarrow B \rightarrow C$

HSECOE

$$\frac{\partial \alpha_1}{\partial t}\Big|_{kinetics} = k_1 \left[C_0 \left(1 - \alpha_1 \right) \right]^{n_1} \qquad \frac{\partial \alpha_2}{\partial t} \Big|_{kinetics} = k_2 \left[C_0 \left(\alpha_1 - \alpha_2 \right) \right]^{n_2}$$

Eliminate need for separate C++ Compiler

- Use MatLAB functions rather than S-Functions
- New version of MatLAB require importing separate C++ compiler

Accomplishments and Progress Model Website Analytics (through April 2017)

Model Website Analytics Web Flow

Website users are going to the model webpage

Accomplishments and Progress Model Website Analytics

45

MODEL	DOWNLOADS (Since AMR16)
H ₂ Storage Tank Mass and Cost Model	150 (49)
MHAE Model	46 (17)
MHFE Model	74 (33)
Vehicle Simulator Framework Model	107 (39)

39 new downloads of the Vehicle Simulator Framework Model since April, 2016.

AMR Comments

2016 AMR Comment	2017 Response/Approach
Models written in MatLAB/Simulink may not be utilized by material researchers	Have developed executable sizing routines that do not require MatLAB/Simulink
Outside materials developers would find it useful to have access to the source codes.	Source code is available on the website and can be modified (user beware)
Make accommodations for RT Adsorbents	Model currently can accommodate RT adsorbents but BOP not yet accounted for properly.
Documentation of the instructions for the models should be providedincluding specific software requirements and critical assumptions	User manual provides specific software requirements and critical assumptions. Journal articles provide documentation of approach.
The project should obtain feedback from "outside" users that are not HSECoE members and then make adjustments based on their input—users workshop	Evaluating materials from others, including non-HSECoE members: Mike Veenstra, Ford Motor Co. Don Siegel, University of Michigan Jeff Long*, UC Berkeley

*New collaboration – the team is altering the codes to accommodate Jeff's room temperature adsorbent material.

Collaborations

(FJ) HSECOE

Organization	Relationship	Туре	Responsibility
NREL	Team Member	Federal Lab	Update Website and Framework
SRNL	Team Member	Federal Lab	Adsorbent and Compressed Gas Modeling
PNNL	Team Member	Federal Lab	Chemical Hydrogen and Metal Hydride Modeling
Ford	Consultant	Industry	Beta Testing, Fuel Cell Model, Adsorption Data
RCB Hydrides LLC	Consultant	Industry	Beta Testing, H ₂ Storage Expertise
University of Michigan	Material Developer	Academia	Adsorption Data
University of California Berkeley	Material Developer	Academia	Adsorption Data

Remaining Challenges and Barriers

Increase the use of the models by material developers

- Expand the capability of the models to include other kinetic and thermodynamic expressions
- Simplify the model use for non-modelers
- Increase the use of the models by systems engineers
 - Potential expansion of the model capabilities to other vehicle classes
- Demonstrate the model's utility to other researchers
 - Applying the models to their applications
- Find available data to validate the model

Proposed Future Work

Model Path Forward – Next Steps

- Convert isotherm fitting routine into MatLAB and stand-alone executable file
- Update Adsorbent model to address room temperature BOP
- Develop stand-alone system executable for MH and Compressed Gas Storage
- Develop volume-based design to target specific vehicle volume limitations/designs and/or, potentially, additional vehicle classes
- Update Adsorbent model with Unilan (or the 2-state Langmuir) models in addition to the D-A model.
- Expand model to other vehicle classes (beyond light duty)
- Work with Material Based H₂ Storage Developers to Apply model to their materials
- Maintain and enhance exiting framework models and track web activity and downloads.

Proposed Future Work Past and Proposed Future Deliverables

	Deliverable	Date
3	Develop storage system sizing pre-processor (CH storage system).	Complete
4	SMART milestone – Develop a stand-alone isotherm data fitting routine to convert raw excess adsorption H_2 data into its D-A parameters.	Complete
5	GUI Update for user input capability and documentation.	Complete
6	SMART milestone - Stand-alone System Estimator: Executable version of the sizing functions for Adsorbent and CH models to create first-order storage system estimates based on material properties.	Complete
7	Update web models: Executable System Estimators, Isotherm Fitting Tool, GUI/framework.	6/2017
8	Develop MH and compressed gas storage system estimators	9/2017
9	Provide update on web portal activity—web site hits and time on site, web site use locations and model down loads.	12/2017
10	Update Adsorbent and CH models with volume-based design to target specific vehicle classes	3/2018
11	Alternative Storage System Formulations: Update the hydrogen storage equations for additional theoretical formulations. (i.e. Unilan or 2-state Langmuir)	6/2018
12	Update models with expanded vehicle class options and newly available data from other DOE programs	9/2018 ₃₃

Technology Transfer Activities

- Tracking model downloads
- Requesting feedback from users
- Utilizing Beta Testers from industry to evaluate the utility of the models and suggest improvements

Summary

Relevance	Provide materials based hydrogen storage researchers with models and materials requirements to assess their material's performance in an automotive application.
Approach	Improve framework utility by bridging the gap between the information generated by the materials researcher and the parameters required for the framework model.
Technical Accomplishments and Progress	 Developed system estimator for CH and Adsorbents. System estimator used with framework GUI and as standalone executable. Developed a stand-alone isotherm data fitting routine for D-A parameters. Improved website and model accessibility.
Collaborations	 Project team includes NREL, SRNL, and PNNL. Consultants from industry participate in team meetings and provide input.
Proposed Future Research	 Expand the use of models by demonstrating their utility with other storage materials, theoretical formulations, and vehicle class options.

Collaboration

Questions? HSECoE Models on the WEB Team:

Matthew Thornton David Tamburello Kriston Brooks Sam Sprik

With support from Bob Bowman and Mike Veenstra

Adsorption data provided by Ford, University of Michigan, and University of California Berkeley

Special thanks to the rest of the HSECoE, Jesse Adams, and Ned Stetson

