Project ID: ST122

Hydrogen Adsorbents with High Volumetric Density: New Materials and System Projections

Alauddin Ahmed,¹ Yiyang Liu,² Justin Purewal,³ Saona Seth,² Anuska Shresth,²

Antek Wong-Foy,² Adam Matzger,² Mike Veenstra,³ and **Don Siegel**¹ (PI)

¹Mechanical Engineering Department and ²Department of Chemistry, University of Michigan

³Ford Motor Company

DOE Annual Merit Review, June 8, 2017, Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

Project Start Date: Project End Date: August 1st, 2015 July 31st, 2018

Total Project Budget: \$1,040,000

Federal Share:

UM : \$800,000			
Ford:	\$192,000		
Total:	\$992,000		
Cost Share : \$48,000) (Ford)	
Total Funds S	~\$500,000		

*Estimated as of 3/31/17

Barriers

Barriers addressed

- Volumetric Density
- Gravimetric Density

Partners

Interactions/collaborations:

Ford Motor Company, Hydrogen Storage Engineering Center of Excellence (HSECoE)

Project lead:

D. Siegel, University of Michigan

Background

- A high-capacity, low-cost method for storing hydrogen remains one of the primary barriers to the widespread commercialization of fuel cell vehicles
- Storage via adsorption is a promising approach due to its fast kinetics, facile reversibility, and high gravimetric densities
- An unfortunate characteristic of adsorptive storage is that high gravimetric densities typically come at the expense of volumetric density (total basis)
- HSECoE developed a 100 bar MOF-5-based storage system that approached competitiveness with 700 bar compressed. Our work in the HSECoE identified additional MOFs that may out-perform MOF-5, potentially resulting in a low-pressure system that could surpass 700 bar

Project goal: Demonstrate best-in-class MOFs that achieve high volumetric and gravimetric H_2 densities *simultaneously*, while maintaining reversibility and fast kinetics

Relevance

Objective 1: Demonstrate MOFs with high volumetric and gravimetric hydrogen densities, exceeding those of MOF-5

- Prior studies typically focus on maximizing gravimetric density alone
- Synthetic efforts guided by high-throughput screening
- If successful, these compounds will set a new high-water mark for H₂ density in adsorbents at cryogenic conditions
- ✓ Computationally screened H₂ capacity of ~470,000 MOFs
 ✓ Identified 2,000+ compounds that exceed the performance of MOF-5 benchmark by 15%

Objective 2: System-level projections

- Project performance of most promising compounds to the system level by parameterizing models developed by the HSECoE
- Clarify how materials properties impact system performance

✓ Completed first demonstration of HSECoE model to IRMOF-20 and DUT-23(Co)-based systems

Approach

Notes:

- All volumetric hydrogen densities reported assume single-crystal MOF densities.
- Unless otherwise stated, all measurements and calculations are performed at T = 77 K.

Concept

Year 2 Milestones

Our approach links atomic scale computation, experimental synthesis & characterization, and system level modeling

Year	Milestone or Go/No-Go	Due	Description	Status
2	Milestone	10/31/16	Measure degree of residual solvent/salt present in compound from Go/No-go 1; demonstrate less than 5% retention	Complete . Good agreement between measured and calculated surface areas of IRMOF-20 indicate nearly complete solvent removal.
2	Milestone	1/31/17	Identify at least 1 MOF from GCMC and refined high- throughput screening from expanded MOF database that has the potential to exceed the performance of MOF-5 baseline system.	Complete . 2,000+ compounds identified.
2	Milestone	4/30/17	Synthesize 2 additional promising MOFs identified by the revised screening analysis. The goal is for at least 1 MOF to reach 75% of the projected surface area.	Complete. At least 2 MOFs within 90% of calculated SA; a 3 rd MOF is within 80%.

1	Go/No-Go	7/31/16	Demonstrate at least 1 MOF with >90% projected SA, >3,000 m ² /g, and H ₂ capacity matching MOF-5 baseline	IRMOF-20 demonstrated
---	----------	---------	--	-----------------------

2	Go/No-Go 7/31/17	7/31/17 Demonstrate at least 1 MOF with hydrogen capacities exceeding baseline MOF-5 by 15%	In progress	7
---	-------------------------	---	-------------	---

High-throughput Screening

Prior work: developed a database of MOFs by mining the CSD. Chahine rule and crystal structure were used to predict H_2 capacity in thousands of compounds

J. Goldsmith, et al., Chem. Mater., **25**, 3373 (2013).

Grand Canonical Monte Carlo

- GCMC = atomistic method that calculates the total amount of H₂ (adsorbed + gas phase) contained within the pore space of a MOF at given T, P
- Does not rely on empirical correlations such as the Chahine-rule

Example GCMC simulation of CH_4 adsorption in Ni-DOBDC at 298 K and 35 bar

- Calculations employ the MGS* and the Pseudo-FH** unified atom models for H₂-MOF interactions
- MOF atoms are fixed

Force Field	Sigma (Å)	Epsilon/k _B (K)
MGS	2.958	36.7
Pseudo-FH	3.064	30.1

Flowing supercritical CO₂ activation is milder than vacuum activation \rightarrow minimizes pore collapse and maximizes surface area

Batch activation: Nelson, A. P.; Farha, O. K.; Mulfort, K; Hupp, J. T. J. Am. Chem. Soc. **2009**, 131, 458. Flow activation: Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. **2013**, 49, 1419.

MOFs activated with flowing sc-CO₂ generally exhibit superior properties

Material	Surface area (flow Sc-CO ₂ activation)	Surface area (vacuum/batch Sc-CO ₂ activation)
UMCM-9	5357 m²/g	1330 m²/g (vac)
FJI	4813 m²/g	4043 m²/g (batch)
MOF-74 (Zn/DOBDC)	1108 m²/g	750-950 m²/g (vac)
UMCM-10	4001 m²/g	Structure collapses under vacuum activation
UMCM-12	4849 m²/g	Structure collapses under vacuum activation
IRMOF-8 (non-interpenetrated)	4461 m²/g	Structure collapses under vacuum activation
A series of functionalized IRMOF-8 (non-interpenetrated)	~4000 m²/g	-
HKUST-1	1710-1770 m ² /g (heating required)	682-1944 m ² /g (vac)

Liu, B.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2013**, *49*, 1419. Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Sci.* **2014**, *5*, 3729. Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2012**, *48*, 9838. Tran, L. D.; Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Langmuir* **2015**, *31*, 2211.

Accomplishments and Progress

Examples of Simulated Isotherms

GCMC isotherms calculated with the pseudo-Feynman-Hibbs interatomic potential are in very good agreement with our measured isotherms

Total Gravimetric H₂ Uptake

IRMOF-20 Capacity

Met 1st Go/No-Go Milestone: Usable capacity of IRMOF-20 surpasses that of MOF-5

Status: Top 20 Real MOFs

We are synthesizing and testing several MOFs projected to surpass MOF-5 by 15%

CSD REF. CODE	Common Name	Metal Type	Density [g/cm ³]	Pore Diameter [Å]	VSA [m²/cm³]	GSA [m²/g]	Void Fraction	Pore Volume [cm ³ /g]	UG [wt. %]	UV [g/L]	Comment	Status
ECOLEP	-	Со	0.41	11.64	1836	4510	0.89	2.09	8.2	39.0	Stability issue after dehydration	Not attempted
XUKYEI	-	Cu	0.29	13.17	1817	6327	0.88	3.02	10.7	37.4	Rotatable bond; interpenetrated; low accessible surface area	Not attempted
VEBHUG	IRMOF-20	Zn	0.45	17.27	1936	4302	0.87	1.89	7.2	37.4	A version of IRMOF-20	Completed
BAZFUF	MOF-143	Cu	0.34	20.24	1860	5470	0.91	2.54	9.1	37.1	High experimental SA; activated material collapses	Completed
HABQUY	PCN-610	Cu	0.29	25.72	1664	5750	0.91	3.04	10.5	37.1	Lengthy linker synthesis	In progress
GAGZEV	NU-100	Cu	0.28	28.67	1613	5777	0.92	3.17	10.8	37.0	Same as HABQUY	In progress
ZELROZ		Zn	0.36	16.91	1790	4947	0.88	2.4	8.7	36.8	Lengthy linker synthesis	In progress
XAFFIV	DUT-10(Co)	Со	0.36	14.23	1910	5329	0.89	2.36	8.5	36.6	SA too far below calc.	Completed
VAGMAT	SNU-30	Zn	0.36	14.92	1898	5203	0.89	2.33	8.5	36.5	Isostructural to XAFFIV; could not be made	Completed
XAFFAN	DUT-10(Zn)	Zn	0.37	14.91	1892	5181	0.89	2.33	8.3	36.5	Same as VAGMAT	Completed
XAFFOB	DUT-10(Cu)	Cu	0.37	14.84	1907	5195	0.89	2.32	8.3	36.4	Isostructural to XAFFIV; SA too far below calc.	Completed
XAFFER	DUT-11	Zn	0.36	14.22	1861	5171	0.89	2.37	8.5	36.3	Same as VAGMAT	Completed
VAGMEX	SNU-30SC	Zn	0.35	15.28	1815	5152	0.9	2.43	8.7	36.3	Same as VAGMAT	Completed
NIBHOW	PCN-6'	Cu	0.28	27.51	1427	5103	0.92	3.19	10.6	36.2	Interpenetration is an issue; lit. SA is lower than that of interpenetrated MOF	Not attempted
ADATIK	rht-MOF	Cu	0.38	24.55	1724	4566	0.89	2.3	8.1	36.0	Flexible	Not attempted
ADATAC	rht-MOF	Zn	0.34	26.34	1735	5145	0.9	2.57	8.9	35.9	Flexible	Not attempted
VETMIS	-	Cu	0.31	17.24	1782	5713	0.9	2.77	9.5	35.7	surface area < 1000 m ² /g	Not attempted
XAHPON	CMOF-1a	Cu	0.28	17.3	1498	5268	0.92	3.1	10.4	35.5	Flexible	Not attempted
FEBXIV	CMOF-2	Cu	0.29	17.29	1517	5166	0.91	3	10.1	35.5	Flexible	Not attempted
LEJCIO	-	Zn	0.33	18.52	1722	5275	0.91	2.66	8.9	35.4	Flexible	Not attempted
M	OF-5	Zn	0.60			3512		1.14	4.5	31.1		

MOFs Synthesized (1)

Several promising MOFs could not be synthesized with high surface area

OGEBAF (ZJU-32)

Cai, J. et al., Chem. Commun. 2014, 50, 1552.

Surface Area

Measured BET	
Calculated	
Literature	

=	3714	m²/g
=	5163	m²/g
=	3831	m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

GCMC calculated grav. = 6.9 wt.% GCMC calculated vol. = 33.3 g/L

BAZFUF (MOF-143)

Furukawa, H. et al., Inorg. Chem. 2011, 50, 9147.

Surface Area

Measured BET	= 4829 m²/g
(Unstable a	after activation; collapses over time)
Calculated	= 5470 m²/g
Literature	= not reported

Usable capacities: P-swing between 5 and 100 bar at 77K

MOFs Synthesized (2)

Several promising MOFs could not be synthesized with high surface area

XAFFUH [DUT-12]

Grünker, R. et al., Eur. J. Inorg. Chem. 2010, 3835.

Surface Area

Measured BET	= 958 m²/g
Calculated	= 5152 m²/g
Literature	= 824 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77K

GCMC calculated grav.	= 8.8 wt.%
GCMC calculated vol.	= 34.8 g/L

XAFFIV [DUT-10(Co)]

Grünker, R. et al., Eur. J. Inorg. Chem. 2010, 3835.

Surface Area

Measured BET	= 456 m²/g
Calculated	= 5329 m²/g
Literature	= not reported

Usable capacities: P-swing between 5 and 100 bar at 77K

MOFs Synthesized (3)

Examples of high surface area MOFs with unsatisfactory volumetric capacity

MOF-177-NH2

Dutta, A. et al., *Angew. Chem. Int. Ed.* **2015**, *54*, 3983.

Surface Area

Measured BET
Calculated
Literature

= 4280 m²/g (fresh) = 4514 m²/g = 4631 m²/g

Usable capacities:

Measured grav.	= 6.4 wt.%
GCMC calculated grav.	= 6.4 wt.%
Measured vol.	= 32.6 g/L
GCMC calculated vol.	= 33.7 g/L

ICAQIO [DUT-23(Co)]

Klein, N. et al., Chem. *Eur. J. Chem.* **2011**, *17*, 13007.

Surface Area

(fresh) Measured BET Calculated Literature = 4044 m²/g (fresh) = 4714 m²/g = 4850 m²/g

Usable capacities:

= 6.2 wt.%
= 6.7 wt.%
= 30.2 g/L
= 31.9 g/L

ICAQOU [DUT-23(Cu)]

Klein, N. et al., Chem. *Eur. J.*. *Chem.* **2011**, *17*, 13007.

Surface Area

Measured BET	= 4601 m ² /g (fresh)
Calculated	= 4664 m²/g
Literature	= 4730 m²/g

Usable capacities:

Measured grav.	= 6.7 wt.%
GCMC calculated grav.	= 6.6 wt.%
Measured vol.	= 32.4 g/L
GCMC calculated vol.	= 31.7 g/L

Work in Progress (1)

Examples of real MOFs that are currently being assessed experimentally

CSD REF. CODE	Organic Linker	Structure	BET Surf m²	ace Area /g	Calculate Capac (P-swing 5	Reference	
			Calculated	Literature	Grav. [wt.%]	Vol. [g/L]	
ZELROZ	$HO + CO_2H$	& * * * * * * * * * * * * * * * * * * *	4947	2631	8.7	36.8	Rankine, D. et al., <i>Chem.</i> <i>Commun.</i> 2012 , <i>48</i> , 10328.
EDUVOO	CO ₂ H		4857	Not reported	8.0	35.0	Eddaoudi, M. et al., <i>Science</i> 2002 , <i>295</i> , 469.
GAGZEV ^{ہوہو} ر			5777	6143	10.8	37.0	Yuan, D. et al., <i>Angew.</i> <i>Chem. Int. Ed.</i> 2010 , <i>49</i> , 5357. Farha, O. K. <i>Nat. Chem.</i> 2010 , <i>2</i> , 944.

Work in Progress (2)

Examples of hypothetical MOFs that are currently being assessed experimentally

Isotherm Measurements

 H_2 isotherms of several promising MOFs at T = 77 K

Total Volumetric Uptake

Total Gravimetric Uptake

- Several MOFs out-perform MOF-5 on a gravimetric basis
- The volumetric performance of MOF-5 is difficult to surpass

Summary of Uptake Measurements <

Based on PCT measurements at T = 77 K

MOF	Crystal Density	Volumetric (77 K,100 bar)	Gravimetric (77 K, 100 bar)	Usable Volumetric (5-100 bar)	Usable Gravimetric (5- 100 bar)
	g/cc	g/L	wt%	g/L	wt%
NH2-MOF-177	0.44	50.7	10.3	32.6	6.4
MOF-177	0.43	49.9	10.4	32.6	6.5
DUT-23 (Co)	0.413	49.4	10.7	30.2	6.2
DUT-23 (Cu)	0.413	50.1	10.8	32.4	6.7
HKUST-1	0.879	50.3	5.4	17.9	1.9
Ni-MOF-74	1.195	48.9	3.9	13.8	1.1
MOF-5-PS-4HR	0.59	51.5	8.0	30.4	4.6
IRMOF-20	0.51	52.1	9.3	33.1	5.7
MOF-5	0.60	53.3	8.3	31.1	4.5

We have expanded our computational screening from ~2,000 MOFs to nearly 500,000

		Calculated Usable Capacity				
Database	Available in database	Zero surface area	H ₂ capacity evaluated empirically	H ₂ capacity evaluated w/ GCMC	Al least equals MOF-5	Exceeds MOF-5 by 15%
Real MOFs (RM) [1,2]	5,109	1,978	3,131	3,131	90	20
Mail-Order MOFs (MO) [3]	112	4	108	112	32	15
In Silico MOFs (IS) [4]	2,816	154	2,662	466	21	1
NW Hypothetical MOFs (NW) [5]	137,000	30,160	106,840	12,374	4,437	768
Zr-MOFs (ZR) [6]	204	0	204	204	126	35
UO Hypothetical MOFs (UO) [7]	324,500	32,993	291,507	16,372	7,768	1,209
Total	469,741	65,289	404,452	32,659	12,474	2,048

1. Goldsmith, J., A.G. Wong-Foy, M.J. Cafarella, and D.J. Siegel, Chem. Mater., 2013. 25: p. 3373-3382.

- 2. Chung, Y.G., J. Camp, M. Haranczyk, B.J. Sikora, et al., Chem. Mater., 2014. 26: 6185-6192.
- 3. Martin, R.L., L.-C. Lin, K. Jariwala, B. Smit, and M. Haranczyk, J. Phys. Chem C, 2013. 117: p. 12159-12167.
- 4. Bao, Y., R.L. Martin, C.M. Simon, M. Haranczyk, B. Smit, et al., J. Phys. Chem. C, 2015. **119**: 186-195.
- 5. Wilmer, C.E., M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, et al., Nat. Chem., 2012. 4: 83-89.
- 6. Gomez-Gualdron, D.A., O.V. Gutov, V. Krungleviciute, et al., Chem. Mater., 2014. 26: p. 5632-5639.
- 7. Aghaji, M.Z., M. Fernandez, P.G. Boyd, T.D. Daff, and T.K. Woo, Eur. J. In. Chem., 2016. 2016: 4505-4511.

Computation has identified ~2,000 MOFs that are projected to meet the MOF-5+15% target (Go/No-Go #2)

MOF #	ρ_{crystal} [g/cm ³]	SA _{Accessible} [m ² /g]	Void Frac.	PV _{Accessible} [cm ³ /g]	Tot. Grav.	Tot. Vol.	Usable Grav.	Usable Vol.	Source DB
	10, - 1	. ,01		1- 701	[wt. %]	[g/L]	[wt. %]	[g/L]	
1	0.47	4548	0.78	1.34	11.2	59.6	7.1	39.3	MO
2	0.41	4510	0.89	2.09	10.9	50.0	8.2	39.0	RM
3	0.42	5147	0.86	2.04	10.6	50.2	7.9	38.2	UO
4	0.42	5119	0.86	2.05	10.6	49.4	7.9	38.2	UO
5	0.48	4686	0.84	1.75	9.6	50.9	7.0	38.2	IS
6	0.40	5428	0.85	2.16	11.2	49.7	8.3	38.2	UO
7	0.40	5285	0.86	2.12	10.9	49.4	8.2	38.1	NW
8	0.36	5957	0.86	2.36	11.9	49.1	8.9	38.1	UO
9	0.43	5031	0.86	1.98	10.3	50.0	7.7	38.1	UO
10	0.41	5164	0.85	2.06	10.9	50.7	8.0	38.1	UO
11	0.35	6165	0.86	2.47	12.3	49.0	9.3	38.1	NW
12	0.41	5255	0.86	2.09	10.6	48.8	8.1	38.0	UO
13	0.43	5081	0.85	1.99	10.3	49.4	7.8	38.0	UO
14	0.37	5817	0.86	2.34	11.8	49.4	8.8	38.0	UO
15	0.43	5030	0.85	1.99	10.3	49.3	7.8	38.0	UO
16	0.42	5147	0.86	2.03	10.4	49.3	7.8	38.0	UO
17	0.41	5319	0.86	2.09	10.7	49.0	8.1	38.0	UO
18	0.43	5049	0.86	1.98	10.4	50.3	7.6	38.0	UO
19	0.36	6037	0.86	2.40	12.1	49.1	9.1	38.0	UO
20	0.42	5127	0.86	2.03	10.4	49.0	7.8	37.9	UO
IRM	IOF-20						5.7	33.1	
MOF-	5 + 15%						5.2	35.8	

Examples of High Capacity MOFs

Examples drawn from screening of hypothetical MOF databases

MO: MOF-5_cooh_2_2738_1_basic_opt UG: 7.1 wt.%; UV: 39.3 g/L GSA: 4548 m²/g; D: 0.47 g/cm³ PV: 1.34 cm³/g; VF: 0.78

UO: str_m3_o5_o25_f0_nbo.sym.193.out UG: 7.9 wt.%; UV: 38.2 g/L GSA: 5147 m²/g; D: 0.42 g/cm³ PV: 2.0 cm³/g; VF: 0.86

IS: Syn014648
 UG: 7.0 wt.%; UV: 38.2 g/L
 GSA: 4686 m²/g; D: 0.48 g/cm³
 PV: 1.8 cm³/g; VF: 0.84

NW: 5048108_i_1_j_25_k_20_m_3

UG: 8.2 wt.%; UV: 38.1 g/L GSA: 5285 m²/g; D: 0.40 g/cm³ PV: 2.1 cm³/g; VF: 0.86

ZR: NU-TPE-4PTT-ftw UG: 11.5 wt.%; UV: 37.5 g/L GSA: 6323 m²/g; D: 0.27 g/cm³ PV: 3.3 cm³/g; VF: 0.88

Property-Performance Trends

Our database presents an opportunity to explore correlations between usable capacity and basic materials properties

Single Crystal Density [g/cm³]
 Porosity
 Surface Area [m²/g]
 Pore Volume [cm³/g]

Variable-Temperature Isotherms *Ford*

H₂ uptake in two of the most promising MOFs were measured at several temperatures to allow for system-level projections

- Measurements at 4 temperatures, from cryogenic to ambient conditions
- Data fit to Unilan and D-A isotherm models
- Performance at T = 160 K interpolated based on model projections

System Modeling

The HSECoE System Model was used to project the performance of IRMOF-20 and DUT-23(Co)-based systems

Parameter	MOF-5 ^a	MOF-5 ^b	IRMOF-20	DUT-23(Co)	Units	Comments
alpha	2895.13	2239	2512.09	2675.29	J/mol _{H2}	D.A. Parameter Enthalpic contribution to the characeristic free energy of adsorption
beta	15.29	19.5	14.61	15.53	J/mol _{H2} /K	D.A. Parameter Entropic contribution to the characeristic free energy of adsorption
m	2	2	2	2		D.A. Parameter Exponential constant for adsolute adsorption
n _{max}	96.43	125.40	99.22	112.70	mol _{H2} /kg _{Ac}	D.A. Parameter Maximum H2 loading of the entire adsorption volume
P ₀	1.39E+09	1.69E+09	7.64E+08	1.03E+09	Pa	D.A. Parameter Pseodo-saturation pressure (pressure of the gas phase)
rho _{Ads}	130	200	200	200	kg_{Ads} /m ³	D.A. Parameter Bulk Density of the MOF-5
Va	0.00170	0.00201	0.00173	0.00171	m ³ /kg _{Ads}	D.A. Parameter Adsorbed volume per mass of adsorbent
V _v	0.00725	0.00450	0.00459	0.00429	m ³ /kg _{Ads}	D.A. Parameter Void volume per mass of adsorbent

Collaborations

University of Michigan, Mechanical Engineering

Atomistic simulation and project management

University of Michigan, Dept. of Chemistry

Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)

- PCT measurements
- Materials augmentation, characterization, scale-up, and system modeling

HSECoE/SRNL (unfunded collaborator)

Assistance with system models (David Tamburello)

Challenges and Barriers

- Many more compounds identified by computation than can be synthesized
 - Assessment by a human is needed before synthesis can proceed
 - This is a bottleneck
- Structure collapse or incomplete solvent removal during activation
 - "Can it be made?"
 - Failure to achieve expected surface area and porosity
 - Properties that control "synthesizability" are not well-understood
- Incorrect, incomplete, or disordered crystal structure data
 - Garbage in, garbage out
 - False positives in screening

- Expand screening to additional real MOFs recently reported in Cambridge Structure Database
- Densification of selected MOFs
- Focus on 2nd go/no-go milestone
 - Identify MOFs with 15% improvement in H_2 capacity over MOF-5

Summary

- **Goal**: demonstrate MOFs that achieve high volumetric *and* gravimetric H₂ densities simultaneously (at cryogenic conditions)
 - Establish new high-water mark for H₂ storage in adsorbents
- **Approach**: (*Atoms to systems*) High-throughput screening in combination with experimental synthesis, activation, characterization, and system-level projections

• Accomplishments:

- Demonstrated IRMOF-20: surpasses usable capacity of MOF-5 (1st Go/No-Go)
- Nearly 500,000 MOFs assessed computationally; more than 2,000 compounds identified that can surpass MOF-5+15%
- Several promising MOFs synthesized and evaluated with respect to their H₂ uptake; thus far, none exhibit usable volumetric capacities exceeding IRMOF-20
- Estimated system level performance of IRMOF-20 and DUT-23(Co) using HSECoE system models parameterized from isotherm measurements

The Team

Technical Backup Slides

Capacity Definitions

$$C_{tot} = C_{exc} + \frac{100 \times d_g V_{pore}}{1 + d_g V_{pore}}$$

$$V_{pore} = \frac{d_{sk} - d_{bulk}}{d_{sk} d_{bulk}}$$

Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials, V3.34, p.223

 C_{tot} = total adsorption capacity in wt.% C_{exc} = excess adsorption in wt.% V_{pore} = specific pore volume

d_g = density of H₂ gas at T,P d_{sk} = skeletal density d_{bulk} = bulk density

"Material" Hydrogen Capacity Definitions

Performed air-free synthesis¹ of the benchmark compound MOF-5

- Measured performance of in-house MOF-5
 - H₂ uptake & BET surface area essentially identical to BASF-supplied MOF-5 (HSECoE)
- Usable capacity (pressure swing to 5 bar) adopted as benchmark

Total **Usable** (P-swing) Volumetric Gravimetric Volumetric Gravimetric р (g/L) (wt.%) (g/L) (wt.%) (bar) 5 22.2 3.5 22.2 3.3 35 44.46.8 47.8 25.6 3.8 50 7.3 53.3 31.1 100 4.5 8.0

T = 77 K

Synthesis of IRMOF-20 was attempted after computation identified it as a promising compound

 $4324 \text{ m}^2/\text{g}$

 $3409 \text{ m}^2/\text{g}$

Calculated =

Literature =

Rowsell, J. L. C.; Yaghi, O.M. J. Am. Chem. Soc. 2006, 128, 1304.

MOFs Identified by Prior Screening

Several MOF "Targets of Opportunity" were identified

- Combine high gravimetric and volumetric densities
- Overlooked: no/limited experimental evaluation
- Can these be synthesized in a robust form?

	EPOTAF (SNU-21)	DIDDOK	LURGEL (TO-MOF)	ENITAX (IMP-9)
Total Grav. (wt. %)	11	10.2	9.7	9.3
Total Volumetric (g/L)	71	60	57	59
Crystal Density (g/cm ³)	0.58	0.53	0.53	0.57
Calc'd/Meas. SA (m²/g)	5208/700-900	4651	4386/680	4162
Notes	Best combination of grav. & vol. density. H ₂ uptake measured previously: 5 wt %	No measurements	CO ₂ uptake measured.	No measurements

"Quick and dirty" Chahine-rule predictions of H₂ uptake in MOFs correlate strongly with GCMC calculations

Although GCMC is more expensive, it provides access to full isotherm and allows estimation of usable capacities

MOF Dashboard

We have developed a database to track promising compounds and share data

