

Proudly Operated by Battelle Since 1965

Hydrogen Storage Characterization and Optimization Research Effort (HySCORE)

Tom Autrey, Mark Bowden, Abhi Karkamkar, Bojana Ginovska, Marina Chong, Adrian Houghton, Iffat Nayyar, Gary Edvenson

Pacific Northwest National Laboratory June 7, 2017

Project ID: ST132

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: 10/1/2015 **End:** Project continuation determined by DOE. Currently scheduled through 9/30/18

Budget

HySCORE: \$8.2M Federal Share: NREL: \$2.6M LBNL: \$2.4M PNNL: \$2.4M NIST: \$0.8M PNNL Funds Spent: ~\$1.2M (Estimated as of 3/31/17)

Barriers

- General:
- A. Cost; B. Weight and Volume; C. Efficiency;
 E. Refueling Time
- Reversible Solid-State Material:
- M. Hydrogen Capacity and Reversibility;
- N. Understanding of Hydrogen Physi- and Chemi- sorption; O. Evaluation Facilities.

Partners/Collaborators

- NREL Tom Gennett, Phil Parilla
- NIST Craig Brown, Terry Udovic
- LBNL Jeff Long, Martin Head-Gordon
- HyMARC Brandon Wood, Vitalie Stavila, Lenny Klebanoff
- Hawaii Craig Jensen
- IEA-HIA Task 32 B Hauback, P Chen, T He, S Orimo
- AIST Q Xu, Y Himeda, H Kawanami
- FAU Erlangen Nürnberg K Mueller

Milestones

- 6/30/2016 Perform testing on the variable pressure capability of new low temperature NMR between 1-10 bar at 273 K. complete
- 9/30/2016 Measure ¹H NMR of physi-sorbed H₂ at temperatures between 100 and 300 K at 1 & 5 bar H₂ to show that experimental heat of adsorption is within 5 kJ/mol of reported value. (last year AMR) complete
- 12/31/2017 Develop an improved computational protocol (density functional theory, DFT) and hybrid DFT/molecular mechanics MD simulations to predict enthalpy and free energy of H² uptake and release in complex hydride materials and calculate NMR chemical shifts of key intermediates . (technical backup slides) complete
- 3/31/2017 Measure vapor pressure of Mg(BH4)2*THF adduct as from 300 373 K Calculate the binding energies of THF adducts 1-3 and use TPD-MS to measure temperature for release of THF. (accomplishments) complete
- 6/30/2017 Measure ¹H NMR of sorption standard at 100 bar and 100 K. Assign the sorption and free hydrogen peaks and show that experimental heat of adsorption is within 10% of reported value.
- 9/30/2017 Provide analysis and characterization of 2 samples assigned by DOE (NMR , TEM or Calorimetric) (<u>Collaborations</u>) on track

Relevance

We build upon the guidance provided by Hydrogen Storage Centers of Excellence

PNNL leverages unique capabilities to assist material developers:

- Solid-state in-situ high-pressure variable-temperature NMR (to identify key intermediates involved in the release and uptake of H₂),
- Variable pressure reaction calorimetry to experimentally determine enthalpy of H₂ addition in solid and liquid hydrogen stores (high pressure cells unique to PNNL)
- XRD and TEM for new materials characterization
- Computational chemical kinetic modeling (input for "Soup") and spectroscopy library (NMR, IR, Raman)

Goal of HySCORE:

- to assist materials developers to measure (and validate) critical properties and to double energy density from 25 to 50 g H₂/liter.
- to develop and enhance FCTO hydrogen storage core characterization capabilities
- to validate <u>new concepts</u> for input into predictive models that will accelerate progress of materials developers and improve approaches to onboard H₂ storage

Impact Assisting HyMARC core team & seedling projects with materials characterization

- ST118. Improving the Kinetics and Thermodynamics of Mg(BH₄)₂ for Hydrogen Storage. LLNL, SNL. Solid state NMR analysis of hydrogenated MgB2.
- ST 120. Design and Synthesis of Materials with High Capacities for Hydrogen Physisorption. Cal Tech. TEM analysis of metal doped high surface area carbons.
- ST 127-130. *Hymarc consortium.* Experimental and computational spectroscopy library (paper)
- ST137. Electrolyte Assisted Hydrogen Storage Reactions. Liox Power, HRL. Solid state and solution NMR studies of H₂ storage materials with electrolytes
- ST 138. Development of Magnesium Boride Etherates as Hydrogen Storage Materials. Hawaii. XRD analysis of boride etherates

Approach Dynamic connection between theory and experiment

Overview Progress reports illustrates how we assist materials developers

- Liquid carriers:
 - s-Triazine $C_3N_3H_3$ (69 g H_2 /liter) ΔH ranges from 36 57 kJ/mol H_2
 - Theory Why is there such a large range of enthalpies Error bars too large to be useful, e.g., T_c varies from 20–160 $^\circ C$
 - Experiment Can we use calorimetry to measure DH to benchmark theory when there is a discrepancy. What is experimental heat of hydrogenation of triazine – calorimetry
- Complex hydrides:
 - Mg(BH₄)₂ (2.5–15 wt% H₂)
 - Theory what intermediates and products should be targeted to enhance reversibility?
 - Theory are there unique spectroscopic signatures for key intermediates?
 - Experiment Can in-situ solid state NMR be used to follow the chemistry and compare additives and reaction conditions?
 - Experiment and Theory Does a THF 'ligand' change the reaction pathways?

Liquid Organic Hydrogen Carriers (LOHC)

What are best approaches to predict ΔH_{H2} for new LOHCs? Air Products: target materials with ΔH_{H2} 40-55 kJ/mol for optimum reversibility (assumes $\Delta S_{H2} \sim 125$ J/K/mol)

• Predicting ΔH_{H_2} for a new LOHC – three recommendations:

- (i) CCSD(t) or (ii) calorimetry or (iii) DFT gas phase ΔH_{H2} * scaling factor 0.9.
 - Triazine ca. 48 kJ/mol H_2 (T_c = 110 °C)
- Reaction calorimetry provides capability to determine kinetics and thermodynamics of release and uptake of H₂ in LOHCs.
- Recommendations for future work
 - Pd/C catalyst 'too good' resulting in C-N bond scission
 - Investigate oligomers of triazine to prevent formation of volatile intermediates
 - Use a more selective catalyst to activate C-H bonds (not C-N bonds)

Background Triazine is a liquid organic hydrogen carrier (LOHC) that has a near perfect ΔH_{H2} for reversible H₂ storage – or does it?

Proudly Operated by Battelle Since 1965

7

0		
	<mark>65.3 (73.6)</mark> 69	Use calorimetry to get experimental Δ <i>H</i> in condensed phase
N	<mark>63.6 (67.4)</mark> 62	phase thermodynamics? (solvation or reactants and products)
N	50.5 (62.8) 57	Do we need to account for condensed
	48	What level of theory is required to get 'experimental' accuracy? CCSD(t)
	36.4 to (54.4)	CCSD(t) NIST data base
	ΔH_{H2} (kJ/mol H ₂)	Air Products (Clot, Eisenstein, Crabtree)

Accomplishments

Theory shows calculated enthalpy H₂ addition to triazine depends on stability of isomer

	E	Ezpc	Н	ST	G
lp0	-70.7	-35.1	-43.1	-35.6	-7.5
lp1	-79.5	-43.5	-51.0	-35.6	-15.5
lp2	-84.5	-48.1	-55.6	-35.6	-20.1
lp3	-85.8	-49.0	-56.9	-36.4	-20.5

- At least 4 different isomers.
 - Ip0 is least stable (-43.1 kJ/mol)
 - ip3 is most stable (-56.9 kJ/mol)
- Ip0 could be formed on surface of heterogeneous catalyst
- What are the barriers for interconversion between isomers?

Bojana Ginovska

Accomplishments

Barrier to isomerization is low enough to form most stable isomer even at room temperature

Accomplishments Solvation does not significantly stabilize LOHCs

Reaction

 $(H_2 uptake)$

- \triangleright C₃N₃H₃+3H₂ \Leftrightarrow C₃N₃H₉
- \triangleright C₃N₃H₉+3H₂ \Leftrightarrow 3CH₃NH₂

thermochemistry per H₂

 $\Delta H_{\rm s} (\Delta H_{\rm a})$ -58.4(-56.9) -22.1(-20.5) -50.0(-50.9)

 $\Delta G_{s} (\Delta G_{a})$ -53.7(-54.5)

Ring opening

- \blacktriangleright C₃N₃H₃+6H₂ \Leftrightarrow 3CH₃NH₂ -108.0(-107.8) -76.6(-74.1)
 - solvation correction probably unnecessary, gas phase calculation sufficient. Check to see if D3 (dispersion correction) better than D2.
 - **Ring opening destabilizes perhydro-triazine**

Accomplishments Triazine products unstable so demonstrated capability to measure ΔH with pyrazine (diazine)

Proudly Operated by Battelle Since 1965

NATIONAL RENEWABLE ENERGY LABORATORY

Summary Liquid carriers – reaction calorimetry provides capability to benchmark theory (thermodynamics)

Proudly Operated by Battelle Since 1965

Lessons Learned

- to get accurate prediction of ΔH_{H2} it is critical to <u>Identify all the</u> <u>isomers</u>
- Solvent corrected DFT (continuum model) shows solvation has little affect on calculated ΔH_{H2} gas phase calculations sufficient with scalar.
- Scaling factor needed for (D2) DFT. Is D3 better?

Success will be using calorimetry to optimize catalysis (kinetics)

Accomplishments Complex hydrides: $Mg(BH_4)_2$ and solvates of $Mg(BH_4)_2$

What is optimum range of ΔH^{o}_{H2} for Mg(BH₄)₂? (need to know ΔS^{o}_{H2})

- Calc. $\Delta S^{o}_{H2} (\Delta H^{o}_{H2} \Delta G^{o}_{H2})$ for $B_{3}H_{8}^{-}$, $B_{2}H_{6}^{2-}$, $B_{3}H_{6}^{3-}$, $B_{10}H_{10}^{2-}$, $B_{12}H_{12}^{2-}$.
 - ΔS_{H2} ca. 90±10 J/K/mol (so ΔH_{H2} should range from 30- 45 kJ/mol)
 - ΔH_{H_2} **B**₃**H**₈⁻. <u>Too large</u>: not sufficiently stable to make without additives to stabilize
 - ΔH_{H2} B₁₂H₁₂²⁻. <u>Too small</u>: more stable than BH₄ will need extremely high pressure to regenerate
 - $\Delta H_{H_2} B_3 H_6^{3-} \& B_{10} H_{10}^{2-}$ (7.5 and 8.2 wt% H_2 .) <u>Just right</u>:
- Develop in-situ ¹¹B NMR approach to follow evolution of B with different additives
- Calculated ¹¹B NMR for $B_3H_8^-$, $B_2H_6^{2-}$, $B_3H_6^{3-}$, $B_{10}H_{10}^{2-}$.
 - Observe $B_{10}H_{10}^{2-}$ as major product in THF*Mg(BH₄)₂.
 - Observe -48 ppm peak might be B₃H₆³⁻?

Accomplishments Complex hydrides: $Mg(BH_4)_2$ and solvates of $Mg(BH_4)_2$

Does THF enhance selectivity to form $MgB_{10}H_{10}$?

Yes - Validated THF solvate of Mg(BH₄)₂ forms MgB₁₀H₁₀ with high selectivity at lower temperatures

Selectivity

- No THF: [MgB₁₀H₁₀] / [MgB₁₂H₁₂] ~ 1
- With THF: $[MgB_{10}H_{10}] / [MgB_{12}H_{12}] > 30/1.$
- Reactivity
 - Without THF: $Mg(BH_4)_2$ conv to $[MgB_{10}H_{10}]$ ca. <1% (180 °C 24 h)
 - With THF: Mg(BH₄)₂ conv to [MgB₁₀H₁₀] ca. 60% (180 °C 24 h)
 - Conversion to B10H10 may be limited by equilibrium (ΔHo ca. 39 kJ/mol)
- Recommendations for future research: Foundational studies to understand how additives control selectivity of H₂ release pathways

Background/progress Do THF adducts of Mg(BH₄)₂ enhance both reactivity and selectivity?

Proudly Operated by Battelle Since 1965

Reaction	$\Delta E (\Delta G)$	wt%
	(kJ/mol H ₂)	H ₂
1. $3Mg(BH_4)_2 \Leftrightarrow Mg(B_3H_8)_2 + 2MgH_2 + 2H_2$	176(124)	2.5
2. $3Mg(BH_4)_2 \Leftrightarrow Mg_3(B_3H_6)_2 + 6H_2$	53 (9.7)	7.5
3. $5Mg(BH_4)_2 \Leftrightarrow Mg(B_{10}H_{10}) + 4 MgH_2 + 11H_2$	59 (10.2)	8.2
4. $6Mg(BH_4)_2 \Leftrightarrow Mg(B_{12}H_{12}) + 5 MgH_2 + 12H_2$	48 (-4)	8.1

(I) Characterization of key intermediates $B_3H_8^-$ vs $B_2H_6^{3-}$

Theory predicts $B_2H_6^3$ but experiment shows $B_3H_8^-$. Work to understand the discrepancy between experiment and theory (see technical backup slides)

(II) Validation that additives modify reaction pathways (THF makes reaction 3 most favorable) If true, how much THF is required to control selectivity?

Craig Jensen

Overview Chemical additives change the reaction pathway for H_2 release from Mg(BH₄)₂

Proudly Operated by Battelle Since 1965

Approaches

- Chemical: Bond to complex, e.g., Mg cation (tunable binding energy)
- Physical : Ball mill additive into mixture

Effects

- Kinetic
 - Chemical effect: non-innocent ligands (lower barrier for H2 activation)
 - Materials effect: Physical change phase, defects, grain boundaries
- Thermodynamic
 - Stabilize starting material and/or products
 - Stabilize intermediates, (favor one competing pathway over another)

THF binds to Mg and is a 'chemical additive approach' THF 'solvates' of Mg to differentiate with solvents e.g., 1:1 stoichiometry not excess solvent

Accomplishment Theory suggests that *chemical additive* can be a sound approach, i.e., not volatile, binds to Mg²⁺

in kJ/mol	E	Ezpe	н	G
Mg(BH4)2+THF -> Mg(BH4)2*THF	-92	-86	-85	-38
Mg(BH4)2*THF+THF -> Mg(BH4)2*THF2	-67	-61	-60	-11
Mg(BH4)2*THF2+THF -> Mg(BH4)2*THF3	-29	-23	-23	30
MgB12H12+THF -> Mg(B12H12)2*1THF	-197	-188	-189	-139
Mg(B12H12)2*1THF+THF -> Mg(B12H12)2*2THF	-124	-116	-113	-72
Mg(B12H12)2*2THF+THF -> Mg(B12H12)2*3THF	-100	-87	-87	-29

- First THF binds very strong, last THF binds very weak $THF_1 > THF_2 > THF_3$
- THF binds more tightly to Mg in $MgB_{12}H_{12}$ then Mg in $Mg(BH_4)_2$ This is important to insure THF 'sticks' to Mg during the reaction

Accomplishment TGA/DSC experiment confirms calculations that first THF binds stronger than 3rd THF

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Progress In-situ solid state ¹¹B NMR can be used to follow evolution of amorphous intermediates during H₂ release from [Mg(BH₄)₂ *THF adducts

Pacific Northwest NATIONAL LABORATORY

Marina Chong

- Unknown peak(s) at -13, -15, -21 and -48.2 ppm –
 - is -48.2 ppm Mg₃(B₃H₆)₂?
 - -13 starts and
 -15 catches up and passes

B₁₀H₁₀ appears to grow in from beginning

Summary Solvates work – not yet perfect. ≤1:1 THF/Mg decreases temperature for H₂ release and changes product selectivity

Proudly Operated by Battelle Since 1965

Lessons learned

- THF enhances reactivity and selectivity
- THF better adduct then Et2O, TG, Diglyme, DMSO, TEA, & pyridine, <u>binds</u> <u>tighter and less side reactions</u>
- Need <1THF:Mg to prevent VOC. E.g., 0.5 THF (6.1 wt% H₂)
- <u>New concept</u>: Solvates induce low temperature phase change to enhance diffusion rates and enable low temperature H₂ release

success will be when we understand how solvates enhance selectivity – then we can make them better.

Phuong Nguyen, Sunil Shrestha and Craig Jensen

Do chemical additives stabilize or destabilize H_2 uptake and release from Mg(BH₄)₂?

Preliminary results for B₁₂H₁₂ suggest 'destabilization'

Measure ΔH for regen of THF*Mg(BH₄)₂ from reducing THF₃Mg(B₃H₈)₂ using calorimetry. (experimentally benchmarking)

Determine if the observed reversible dehydrogenation of Mg-borohydride to Mg-boranes can be extended to THF*Mg(BH₄)₂ \Leftrightarrow THF*MgB₁₀H₁₀

compare glyme and MeTHF to THF for reactivity and selectivity

Make $Mg_3(B_3H_6)_2$ by authentic pathway. Does it convert to BH_4 – if so 'design' additive to make it from $Mg(BH_4)_2$

Future work

With HyMARC to model the *soup*. The *soup* is a model that accounts for both chemical and physical phenomena

Any proposed future work is subject to change based on funding levels

Predictive model accounting for both chemical and physical effects. Tae Wook Heo, Shinyoung Kang, Brandon Wood, Iffat Nayyar, Bojana Ginovska

Graphic courtesy of Vitalie Stavila

NATIONAL RENEWABLE ENERGY LABORATORY

H2 gas 282 K

Investigate dynamics of H₂ interactions with metal centers to better model low temperature (30-100 K) ¹H NMR

- Able to get binding energies from T₁ measurements (not so simple to measure change in intensity)
- Demonstrate multiply H₂'s per metal center

Future work

With NREL, LBNL and NIST to investigate physi-sorption

Any proposed future work is subject to change based on funding levels

DON Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Future work With NREL, LBNL and NIST to investigate physi-sorption

Investigate the binding energies of H₂ to B and N doped carbons

- Use theory to guide synthesis initial results w/ gas phase, moving to periodic systems (graphene's)
- Use chemistry to place B and N in known structures
- Use ¹¹B NMR to identify sp² vs. sp³ boron and B-B vs. B-C bonding.

100	
A second	
	1
ALE	
	15

Iffat Nayyar

System	Nomenclature	Binding Energy (KJ/mol H ₂)
$C_{24} H_{12}$	С	-6.2
B C ₂₃ H ₁₃	В	-7.6
N C ₂₃ H ₁₃	Ν	-6.7
	BB ortho	-6.6
$B_2 C_{22} H_{12}$	BB meta	-5.9
	BB para	-5.6
	BN ortho	-6.8
$B_2 C_{22} H_{12}$	BN meta	-7.4
	BN para	-6.9
B ₃ N ₃ C ₁₆ H ₁₂	BN cyclic	-5.5

Report with descriptors to correlate binding energy (e.g., charge, bond order, symmetry, defects.

Proudly Operated by Battelle Since 1965

Department of Energy Office or Energy Efficiency and Renewable Energy Fuel Cell Technology Office

Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy

Reviewers: Thank you for the constructive feedback! Specific comments are address in reviewer only slides

Technical backup slides

Publications

- Zhangpeng Li, Xinchun Yang, Nobuko Tsumori, Zheng Liu, Yuichiro Himeda, Tom Autrey and Qiang Xu. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS Catalysis **2017** Accepted.
- Zachary Giustra, Gang Chen, Monica Vasiliu, Abhi Karkamkar, Tom Autrey, David Dixon, Shih-Yuan Liu. A Comparison of Hydrogen Release Kinetics from 5- and 6- Membered 1,2-BN-Cycloalkanes. J. Am. Chem. Soc. 2017. Accepted.
- Kriston Brooks, Mark Bowden, Abhi Karkamkar, Sean Whittemore, Tom Autrey. Coupling of Exothermic/Endothermic Reactions for Hydrogen Release of Carbon-Boron-Nitrogen Containing Materials. 2016 (J Power Sources 324, 170-178) DOI:10/1016/j.powsour.2016.05.067.
- Sean M. Whittemore, Mark Bowden, Abhi Karkamkar, Kshitij Parab, Doinita Neiner, Tom Autrey, Jacob S. A. Ishibashi, Gang Chen, Shih-Yuan Liu, David Dixon. Blending materials composed of Boron, Nitrogen and Carbon to transform approaches to Liquid Hydrogen Stores. *Dalton Trans* 45(14) 6196-6203, **2016** (special issue on main group chemistry) DOI: 10.1039/c5dt04276c
- Elsa Callini, Zuleyha Özlem, Kocabas Atakli, Bjørn C. Hauback, Shin-ichi Orimo, Craig Jensen, Martin Dornheim, David Grant, Young Whan Cho, Ping Chen, Bjørgvin Hjörvarsson, Petra de Jongh, Claudia Weidenthaler, Marcello Baricco, Mark Paskevicius, Torben R. Jensen, Mark E. Bowden, Thomas S. Autrey, Andreas Züttel. Complex and liquid hydrides for energy storage. *Applied Physics A*. 122(4) **2016**. invited review. DOI: 10.1007/s00339-016-9881-5.

Future work Working with international experts to optimize properties of LOHC

Proudly Operated by Battelle Since 1965

Karsten Mueller (Germany FAU Erlangen Nurnberg) TEA to compare LOHCs. (ASF July-Sept 2017)

Yuichi Himeda and Hajima Kawanami (Japan AIST) Catalysts for H₂ release in LOHCs

Teng He (China DICP) (ASF April 2017 – March 2018) **Optimizing catalysts** for H₂ uptake and release in LOHCs (calorimetry)

Future work

Extracurricular writing projects

Hydrogen Storage Systems for Energy Applications: Materials Development and Characterization. Editors Bob Bowman and Karl Gross. (Elsevier) Complex Hydrides Thermodynamic and Kinetic Challenges and Strategies with Vitalie Stavila, Kriston Brooks and Teng He.

Hydrogen storage in small molecules. Editors Thomas Zeller and Robert Langer. (DeGruyter). Dehydrogenation of ammonia borane and related compounds and Recovery strategies with Mark Bowden

Chemistry consideration in H_2 release and uptake in $Mg(BH_4)_2$. Chemical Communications Feature Article (RSC) with Craig Jensen and Marina Chong

Future work

With NIST for NVS to measure similarities and differences between solvated and unsolvated Mg(BH₄)₂

Spectroscopic studies will provide clues to differences between solvated and unsolvated complex hydrides IR, Raman, NVS

Preliminary results from Neutron vibrational spectroscopy (Terry and Mira). Will repeat with ¹¹B labelled $Mg(BH_4)_2$ curtesy of NREL.

Progress THF additive to $Mg(BH_4)_2$ favors formation of $MgB_{10}H_{10}$ (how much is needed)?

 $5Mg(BH_4)_2 \cdot (THF)x \Leftrightarrow MgB_{10}H_{10} \cdot (THF)x + 4MgH_2 + 11H_2$

- Work backwards (again). Assume 3 THF's bind to Mg cation and work backward, 0.6 THF is maximum to avoid making volatile THF in products.
- Will selectivity $B_{10}H_{10}/B_{12}H_{12}$ change with THF content?

THF/Mg	wt%H2
0	8.16%
0.25	7.00%
0.5	6.12%
1	4.89%
2	3.49%
3	2.72%

- ▶ MgB₁₀H₁₀·3THF + 4MgH₂ + 11H₂ → 5Mg(BH₄)₂·0.6THF 6 wt% H₂
- Assumes THF binds strongly to Mg, is this a good assumption?

Background: Calculated thermodynamic predictions of key intermediates.

Progress: Calculating ΔG to compare with experiment. Can we rely on calculated E_{static} to predict experiment?

> At least 4 steps needed to compare direct with experiment:

(i) $E_{\text{static}} \rightarrow$ (ii) $\Delta H(\text{OK}) \rightarrow$ (iii) $\Delta H^{o} \rightarrow$ (iv) ΔG^{o}

- Challenge no experimental crystal structure for Mg(B₃H₈)₂ so best guess is to start with PEGS/DFT structure
- > Are we missing some critical 'extra' entropy in the borane clusters?

	Supercell Size	ΔE _{static}	(T=0K)	ΔH _{ZPE} (T=0K)	ΔH _{ZPE} (1	=300K)	ΔG _{ZPE} (T=300K)	ΔS (T=	300K)	T	c
Reaction Path		(KJ/mol H ₂)						(J/mol H ₂ K)		(°C)		
			Lit ^a		Lit ^a		Lit ^a			Lit ^a		Lit ^a
$\pi r(P(H)) \rightarrow 1/2 M r(P(H)) + 2/2 M r(H) + 2/2 H$	1	176.3	100	148.7		147.9		128.2	65.5		1983	
$Mg(BH_4)_2 \rightarrow 1/3 Mg(B_3H_8)_2 + 2/3 MgH_2 + 2/3 H_2$	4	176.3	6.3	148.7	-	149.7	-	124.2	84.9		1489	
$Mg(BH_4)_2 \to 1/3 \ Mg_3(B_3H_6)_2 + 2 \ H_2$	4	53.6	57.4	35.3	34.7	37.9	40.2	9.7	94.3	108	129	99
$M_{\alpha}(DH) = 1/5 M_{\alpha}D = H = 1/5 M_{\alpha}H = 11/5 H$	2	58.9	8.9	35.8		38.6		10.2	94.6		135	
$Mg(BH_4)_2 \rightarrow 1/5 MgB_{10}H_{10} + 4/5 MgH_2 + 11/5 H_2$	4	58.9	03	35.8	-	38.6	-	10.2	94.9	-	134	
$M_{\sigma}(DH) = 1/11 M_{\sigma}(D H) + 10/11 M_{\sigma}(H + 20/11 H)$	1	77.5	01 1	53.3		55.4		28.5	89.8		344	
$\operatorname{Mg}(\mathbf{Bn}_{4})_{2} \rightarrow 1/11 \operatorname{Mg}(\mathbf{B}_{11}\mathbf{n}_{14})_{2} + 10/11 \operatorname{Mg}\mathbf{n}_{2} + 20/11 \operatorname{n}_{2}$	2	77.5	81.1	53.3		55.4	-	28.5	89.9	-	343	
$Mg(BH_4)_2 \rightarrow MgB_2H_6 + H_2$	4	65.8	68.9	46.9	49.3	49.4	53.5	21.5	92.9	97.2	259	277
$Mg(BH_4)_2 \rightarrow MgB_2 + 4 \ H_2$	1	51.5	54.6	30.6	32.6	34.8	38.6	3.6	95.9	111.5	90	73
$Mg(BH_4)_2 \rightarrow 1/6 \; MgB_{12}H_{12} + 5/6 \; MgH_2 + 13/6 \; H_2$	2	43.6	47.8	21	23.4	23.57	28.3	-4.4	93.3	105.3	-21	-5
	-			10.0		1-0						

Iffat Nayyar

Progress: Accounting for (ii) zpe and (iii) thermal corrections <u>only</u> lowers ΔH by 20-30 kJ/mol H₂

- A. Even if the wrong polymorph is predicted by PEGS/DFT? Might be able to get another 40 kJ/mol – but we need to find another 100 kJ/mol
- B. B₃H₆³ sure looks appealing from thermodynamics – can you get there 'kinetically'?

Progress: When not available in the literature return to theory to calculate NMR chemical shift

¹¹ B Solid State NMR Chemical Shift δ (ppm)							
	$(\sigma_S)_{The}$	$(\delta_S)_{The}$	$(\delta_{\rm S})_{\rm The} = (\sigma_{\rm S} - \sigma_{\rm R})_{\rm The} + (\delta_{\rm R})_{\rm Exp}$				
Mg(BH ₄) ₂	27.5		-42.2				
$Mg(BH_4)_2 \alpha$	27.6		-42.1				
Mg(BH ₄) ₂ .3THF	30.3		-39.4		-43.2]	
$Mg(B_3H_8)_2$	39.1	-30.6			-30.3	1	
$Mg_3(B_3H_6)_2$	22.5	-47.2		unknown]		
MaD II	73.3	3.6			-1.8	1	
$\mathbf{M}\mathbf{g}\mathbf{B}_{10}\mathbf{H}_{10}$	45.9		-23.8		-28.2]	
$M_{\alpha}(\mathbf{D} \mathbf{H})$	57.2		-12.5		-12.5] .	
$Mg(D_{11}\Pi_{14})_2$	54.2		-15.6		-14.9		
MgB ₂ H ₆	24.9	-44.8					
MgB ₂	122.4	52.6			97]	
$MgB_{12}H_{12}$	56.7		-13		-15		

NMR chemical shifts agree with experiment

- Chemical shielding sensitive to
 - Valence electrons descried by plane waves
 - Size of core represented by PAW psuedopotentials

Allow interpretation of new resonances

To our knowledge these are some of the first calculated NMR spectra in the solid state

Progress: In-situ ¹¹B MAS NMR following hydrogenation of $Mg(B_3H_8)_2$

¹¹B NMR $[Mg(B_3H_8)_2 . 4THF + MgH_2 , 20 - 200$ °C Hydrogenation

Progress: Harmonic approximation does not suggest any special entropy component for $Mg(B_3H_8)_2$.

How does THF change the reaction pathway from $(B_{12}H_{12} + B_{10}H_{10})$ to B. H. only?

arachno

 $\mathbf{B_{10}H_{10}^{2-} \stackrel{\mathrm{H}^{-}}{=} B_{10}H_{11}^{3-} \stackrel{\mathrm{H}_{2}}{=} B_{10}H_{13}^{3-} \stackrel{\mathrm{H}_{2}}$ closo

$H^{-} = MH$

Last year: only have H₂ and H-This year: How does THF change pathways

nido

- Where are the 'branch' points?
- Understand mechanism than you can optimize additives to enhance kinetics

$$\begin{array}{c}
\mathbf{H}_{1} \\
\mathbf{H}_{0}\mathbf{H}_{15}^{3} \longrightarrow \mathbf{B}_{5}\mathbf{H}_{8}^{-} + \mathbf{B}_{5}\mathbf{H}_{7}^{2-} \\
\mathbf{h}_{0}\mathbf{h}_{15}^{3} \longrightarrow \mathbf{B}_{5}\mathbf{H}_{8}^{-} + \mathbf{B}_{5}\mathbf{H}_{7}^{2-} \\
\mathbf{h}_{0}\mathbf{h}_{15}^{3} \longrightarrow \mathbf{B}_{5}\mathbf{H}_{8}^{-} + \mathbf{B}_{5}\mathbf{H}_{7}^{2-} \\
\mathbf{h}_{1}\mathbf{h}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1}^{-} \longrightarrow \mathbf{B}_{5}\mathbf{H}_{10}^{-} \qquad \mathbf{B}_{5}\mathbf{H}_{9}^{2-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1}^{-} \longrightarrow \mathbf{B}_{5}\mathbf{H}_{11}^{2-} \qquad \mathbf{B}_{5}\mathbf{H}_{10}^{3-} \longrightarrow \mathbf{B}_{4}\mathbf{H}_{6}^{2-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{3}\mathbf{H}_{6}^{-} \longrightarrow \mathbf{B}_{4}\mathbf{H}_{10}^{2-} \xrightarrow{\mathbf{H}_{2}} \mathbf{B}_{4}\mathbf{H}_{8}^{2-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4}\mathbf{H}_{9}^{-} \longrightarrow \mathbf{B}_{4}\mathbf{H}_{10}^{2-} \xrightarrow{\mathbf{H}_{2}} \mathbf{B}_{3}\mathbf{H}_{8}^{-} \xrightarrow{\mathbf{H}_{2}} \mathbf{B}_{3}\mathbf{H}_{9}^{2-} \\
\mathbf{H}_{3}\mathbf{H}_{6}^{-} \longrightarrow \mathbf{B}_{3}\mathbf{H}_{6}^{-} \xrightarrow{\mathbf{H}_{2}} \mathbf{B}_{3}\mathbf{H}_{8}^{-} \xrightarrow{\mathbf{H}_{2}} \mathbf{B}_{3}\mathbf{H}_{9}^{2-} \\
\mathbf{H}_{4} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{5} \\
\mathbf{H}_{5} \\
\mathbf{H}_{7}^{-} \xrightarrow{\mathbf{H}_{2}} \\
\mathbf{H}_{6} \\
\mathbf{H}_{7}^{-} \\
\mathbf{H}_{8} \\
\mathbf{H}_{7}^{-} \\
\mathbf{H}_{8} \\
\mathbf{H}_{9} \\
\mathbf{H}_{9} \\
\mathbf{H}_{1}^{-} \\
\mathbf{H}_{1} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1}^{-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1}^{-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1} \\
\mathbf{H}_{2} \\
\mathbf{H}_{1}^{-} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{3} \\
\mathbf{H}_{4} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{2} \\
\mathbf{H}_{3} \\
\mathbf{H}_{3} \\
\mathbf{H}_{4} \\
\mathbf{H}_{2} \\
\mathbf{H}_{4} \\
\mathbf{H}_{4} \\
\mathbf{H}_{5} \\
\mathbf{H}_{4} \\
\mathbf{H}_{5} \\
\mathbf{H}_{5$$

Edvenson