

## HyMARC Seedling: "Graphene-Wrapped" Complex Hydrides as High-Capacity, Regenerable H<sub>2</sub> Storage Materials

Di-Jia Liu (Lead) and Lina Chong Argonne National Laboratory Qingfeng Ge (Sub) Southern Illinois University

2017 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Washington, D.C., June 5-9, 2017

Project ID ST136

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## Overview

#### Timeline

- Project start: Oct. 2016
- Phase I end: Sept. 2017
- Phase II end: Sept. 2019

## **Budget**

- Total project requested: \$1.114 Million
  - DOE share: \$1 Million
  - Contractor share: \$114 K
- Funding in FY2017 (Phase I)
  - DOE fund received: \$ 250 K
  - DOE Fund Spent\*: \$ 100 K
     \* As of 3/31/2017

#### **Barriers**

- Barriers addressed
  - A. System Weight and Volume
  - B. System cost
  - C. Efficiency
  - D. Durability/Operability

### **Partners**

- Interactions/collaborations
  - Argonne National Laboratory (Lead)
  - Southern Illinois University (Subcontractor)
  - HyMARC (SNL, LLNL, LBNL)
  - NREL
  - Shanghai Jiao Tong University

2

### Relevance - Current Challenges for Onboard Hydrogen Storage Technologies

#### DOE Hydrogen Storage Technology Target

| Storage Parameter   | Units                          | 2020    | Ultimate |
|---------------------|--------------------------------|---------|----------|
| System Gravimetric  | kWh/kg                         | 1.8     | 2.5      |
| Capacity:           | (kg H <sub>2</sub> /kg system) | (0.055) | (0.075)  |
| System Volumetric   | kWh/L                          | 1.3     | 2.3      |
| Capacity:           | (kg H <sub>2</sub> /L system)  | (0.040) | (0.070)  |
| Storage System Cost | \$/kWh net                     | 10      | 8        |

#### **Advantages & Challenges of Complex Hydride Storage Materials**



#### **Advantages**

- High gr. (10 ~14 wt.%) & vol. (0.08 ~0.15 kg/L) capacities
- Low storage pressure

#### **Challenges**

- Poor recyclability
- Poor H<sub>2</sub> Purity
- Poor DeH<sub>2</sub>/ReH<sub>2</sub>
   Kinetics



Encapsulating deH<sub>2</sub> products is essential for regeneration

## **Relevance - Objective**

- Phase I Deliver at least one "hydride@graphene" material with reversible total gravimetric capacity >8 wt% H<sub>2</sub> and total volumetric capacity >0.03 kg H<sub>2</sub>/L at temperatures <400°C over at least five sorption/desorption cycles as validated by a DOE designated lab.</li>
- Overall To produce one or more hydride@graphene composite material with regenerable / reversible H<sub>2</sub> storage total gravimetric capacity >10wt.% and volumetric capacity greater than 0.055 kg H<sub>2</sub>/L.

# Potential Advantages of Hydride@Graphenes & Their Impact to Technology Barriers

- System Weight and Volume Hydride@Graphenes have potential to reach both gravimetric and volumetric based on theory and preliminary experimental data
- System Cost Hydride@Graphene is based on robust, solution based chemistry, scalable for industrial production.
- *Efficiency* Hydride@Graphenes could significantly improve DeH<sub>2</sub>/ReH<sub>2</sub> kinetics and temperatures compared to bulk hydrides.
- Durability/Operability Hydride@Graphenes show promise to improve DeH<sub>2</sub>/ReH<sub>2</sub> regenerability with cleaner hydrogen.

## Approach - Complex Hydride Encapsulated by Graphene "Hydride@Graphene"

Concept developed through collaboration between Shanghai Jiao Tong U. & Argonne



- 1. "NaBH4 in 'Graphene Wrapper': Significantly Enhanced Hydrogen Storage Capacity and Regenerability through Nanoencapsulation", L. Chong, X. Zeng, W. Ding, D-J Liu and J. Zou, Advanced Materials, **2015**, 27, 5070–5074
- 2. "Wrapped by graphene": An efficient way to achieve high capacity, reversible hydrogen storage through nanoencapsulated hydride, J. Zou, L. Chong, D-J Liu, X. Zeng, L. Peng, W. Ding, *Science*, **2016**, *351* (6278), 1223, Special issue

## Approach -Advantages of Hydride@Graphene

#### NaBH<sub>4</sub>@Graphene



- Improved DeH<sub>2</sub>/ReH<sub>2</sub> recyclability
  - Retention of DeH<sub>2</sub> byproducts facilitates hydride recovery during ReH<sub>2</sub>
- Improved DeH<sub>2</sub>/ReH<sub>2</sub> kinetics
  - Interaction between hydride and structurally conformable graphene and size control lead to lower DeH<sub>2</sub>/ReH<sub>2</sub> temperatures
- Improved gravimetric capacity
  - Light weight, high surface area of graphene adds less parasitic weight
- Improved hydrogen purity
  - Only hydrogen can shuttle through graphene, reducing the release of byproducts to H<sub>2</sub> stream

# Approach - Development Strategy

| Hydride@Graphene<br>Exploration<br>(ANL)                                                                                | Characterization &<br>Optimization<br>(ANL/HyMARC/HySCORE                                                                                         | Modeling &<br>Simulation<br>(SIU/HyMARC)                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Refining existing and<br/>exploring new hydride@<br/>graphene syntheses<br/>through rational design</li> </ul> | <ul> <li>H<sub>2</sub> storage capacity &amp; reversibility measurements</li> <li>DeH<sub>2</sub>/ReH<sub>2</sub> kinetics measurement</li> </ul> | <ul> <li>Computational guidance<br/>on size-dependent DeH<sub>2</sub>/<br/>ReH<sub>2</sub> activation energy</li> <li>Computational guidance</li> </ul> |
| <ul> <li>Structure characterization</li> <li>Post synthesis treatment</li> </ul>                                        | <ul> <li>Surface/structural<br/>property characterizations</li> </ul>                                                                             | on dopant catalytic effect                                                                                                                              |

- New hydride@graphenes with enhanced H<sub>2</sub> storage capacities
- Reducing graphene usage in hydride@graphene for higher capacities
- Lowering DeH<sub>2</sub>/ReH<sub>2</sub> temperatures through hydride crystallite size control
- Improving DeH<sub>2</sub>/ReH<sub>2</sub> kinetics through interaction with graphene & additives
- Exploring the intrinsic storage capacity of graphene

Collaboration with HyMARC and leveraging existing experimental/ theoretical capabilities are essential to the project success!

## Approach - Phase I Milestones/Go-NoGo Decision

| Month/<br>Year | Milestones/Go-NoGo DP                                                                                                                                                                             | Milestone Status                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| June/17        | Regenerable DeH <sub>2</sub> /ReH <sub>2</sub> storage capacity of > 8 wt.%                                                                                                                       | Storage capacities ranging from 9 wt.%<br>to 7.4 wt.% achieved during six<br>DeH <sub>2</sub> /ReH <sub>2</sub> cycles |
| Sept/17        | To produce sufficient quantity<br>MgH <sub>2</sub> @graphene as precursor for<br>binary hydride@graphenes                                                                                         | To be started.                                                                                                         |
| Sept/17        | To complete structural & capacity characterization for modified NaBH <sub>4</sub> @graphene                                                                                                       | TPD, TGA, XRD, FTIR experiments are completed for the first batch of NaBH <sub>4</sub> @graphene                       |
| Sept/17        | Deliver a "hydride@graphene"<br>with reversible total gr. capacity<br>>8 wt% H <sub>2</sub> and total vol. capacity<br>>0.03 kg H <sub>2</sub> /L at T<400°C over 5<br>sorption/desorption cycles | To be delivered to a DOE designated<br>lab for validation after initial<br>measurement at ANL.                         |

The focus of Phase I is to produce and demonstrate a hydride@graphene with reversible capacity of 8 wt.%.

## Accomplishment - Update Since Project Inception

- New postdoc recruited and started in Jan, 2017
- Eight batches of NaBH<sub>4</sub>@Graphene samples were synthesized.
- Dehydrogenation and rehydrogenation capacities and kinetics were measured and the capacity of 7.4 ~ 9 wt.% were observed
- Several characterizations including TPD, TGA, XRD, FTIR were performed on NaBH<sub>4</sub>@graphene versus NaBH<sub>4</sub>; insightful information on graphene-promoted DeH<sub>2</sub>/ReH<sub>2</sub> recyclability and kinetics were obtained
- Preliminary computational simulations over hydride@graphene were carried out at SIU
- A number of collaborations with HyMARC team were initiated



## Accomplishment - Multiple Dehydrogenation (DeH<sub>2</sub>) Cycles over NaBH<sub>4</sub>@Graphene Demonstrated

Multiple DeH<sub>2</sub> Cycles Over a NaBH<sub>4</sub>@Graphene Composite

Theoretical capacity = 9.1 w.t.% (86%  $\overline{N}aBH_4$  + 14% Graphene)



- Regenerable H<sub>2</sub> discharge was shown over 6 temperature programmed release cycles
- The first cycle demonstrates nearly 100% hydrogen discharge from NaBH<sub>4</sub>@Graphene composite



## Accomplishment - Multiple Rehydrogenation (ReH<sub>2</sub>) Cycles Between DeH<sub>2</sub> over NaBH<sub>4</sub>@Graphene Shown





 One-step rehydrogenation at 350 °C under 4 MPa H<sub>2</sub> leads to recovery of majority hydride in graphene

## Accomplishment - High Fraction of Hydride Regeneration over NaBH<sub>4</sub>@Graphene Achieved



Accomplishment - Temperature Programmable Desorption (TPD) Showed Lower DeH<sub>2</sub> Temperature over NaBH<sub>4</sub>@Graphene



- TPD experiment showed a significant reduction of hydrogen discharge temperature in NaBH<sub>4</sub>@Graphene over bulk NaBH<sub>4</sub>
- A very low hydrogen release temperature (~50 °C) was observed for NaBH<sub>4</sub>@Graphene, its root cause is yet to be identified

#### Accomplishment - Thermogravimetric Analysis (TGA) Confirmed Decrease of DeH<sub>2</sub> Temperature over NaBH<sub>4</sub>@Graphene



- Weight loss for NaBH<sub>4</sub>@graphene matches that obtained from volumetric measurement. Weight loss at < 100 °C was again observed</li>
- No appreciable weight loss for bulk NaBH<sub>4</sub> was observed, indicating the hydrogen release was promoted by graphene
- No other gas product such as diborane were observed



# Accomplishment - X-ray Diffraction (XRD) Demonstrated Recovery of Hydride Crystallites in NaBH<sub>4</sub>@Graphene after ReH<sub>2</sub>



- XRD showed regeneration of crystalline hydride after rehydrogenation
- Hydride crystallite size in NaBH<sub>4</sub>@graphene was reduced slightly compared to bulk hydride estimated based on Scherrer equation



#### Accomplishment - In situ FTIR Showed Reduction of B-H Band During DeH<sub>2</sub> over NaBH<sub>4</sub>@Graphene



- In situ FTIR showed the loss of vibration peak associated with B-H and appearance of peak associated with Na-H as the temperature rose
- No other major chemical residual was found

#### Accomplishment - Computational Modeling Identified Two DeH<sub>2</sub> Pathways for Hydride@Graphene

Quantum Mechanical/Molecular Mechanical Calculation of (MBH<sub>4</sub>)<sub>2</sub>@Graphene (M = Li, Na, K..., # of carbon used for graphene = 1928)



#### Accomplishment - Modeling Results Showed Limited Decreases of DeH<sub>2</sub> Barriers for Hydride@Graphene



|                           | Path 1 |       |       |       | Path 2 |             |       |       |             |       |
|---------------------------|--------|-------|-------|-------|--------|-------------|-------|-------|-------------|-------|
|                           | 1-1    | 1-2   | Δ1    | 2-1   | 2-2    | <b>∆2-1</b> | 2-3   | 2-4   | <b>∆2-2</b> | Δ2    |
| LiBH <sub>4</sub>         | 443.5  | 294.4 | 149.1 | 222.2 | 88.6   | 133.6       | 269.5 | 36.3  | 233.2       | 366.8 |
| LiBH <sub>4</sub> (Encap) | 302.2  | 153.6 | 148.6 | 221.1 | 77.2   | 143.9       | 271.9 | 114.5 | 157.3       | 301.2 |
| NaBH <sub>4</sub>         | 407.7  | 222.0 | 185.6 | 229.8 | 96.4   | 133.4       | 267.4 | 215.1 | 52.3        | 185.6 |
| NaBH <sub>4</sub> (Encap) | 388.7  | 208.9 | 179.8 | 220.3 | 84.1   | 136.1       | 267.9 | 219.4 | 48.5        | 184.6 |
| KBH <sub>4</sub>          | 418.6  | 210.7 | 207.9 | 259.1 | 100.4  | 158.7       | 252.6 | 203.4 | 49.2        | 207.9 |
| KBH <sub>4</sub> (Encap)  | 489.0  | 279.8 | 209.2 |       |        |             | 249.0 | 214.1 | 34.9        |       |

- Modeling shows only minor reduction of transition state barriers and overall reaction enthalpies for graphene encapsulated NaBH<sub>4</sub> in both reaction paths
- Major change in experimentally observed kinetics may be due to other effect

## Collaborations

- HyMARC Computational modeling (solid mechanics) on encapsulated hydrides (in planning with Lawrence Livermore National Lab)
- HyMARC Synchrotron X-ray absorption spectroscopic study on hydride under reaction (in planning with Lawrence Berkeley National Lab)
- HyMARC Molecular Foundry for hydride synthesis optimization (in planning with Lawrence Berkeley National Lab)
- HyMARC Collaborative investigations on the graphene promoted kinetics in hydrides (monthly meeting, Sandia National Lab)
- HySCORE Hydrogen storage capacity certification (National Renewable Energy Lab, to be submitted)
- Southern Illinois University Project subcontractor on the computational modeling (work initiated)
- Shanghai Jiao Tong University Graphene/catalyst material exchange.

# **Proposed Future Work**

#### Phase I

- Continue to increase overall H<sub>2</sub> storage capacity in NaBH<sub>4</sub>@graphene through optimizing hydride/graphene ratio
- Improve DeH<sub>2</sub> and ReH<sub>2</sub> kinetics in NaBH<sub>4</sub>@graphene through catalysis
  - Metal complex as added catalyst
  - Graphene defect / hetero-element incorporation as catalyst
- Continue to improve fundamental understanding of DeH<sub>2</sub> and ReH<sub>2</sub> mechanism through computational modeling and advanced characterization (collaborating with HyMARC)
- Initiate synthesis on binary complex hydrides encapsulated by graphene

#### Phase II

- Exploring new complex hydride@graphene with higher theoretical capacities
- Lowering DeH<sub>2</sub> and ReH<sub>2</sub> temperature and increase rate through the catalytic additives and hydride size control by synthesis
- Investigating DeH<sub>2</sub> and ReH<sub>2</sub> mechanism through advanced characterization & modeling to guide the design and improvement of hydride@graphene
- Engineering downselected hydride@graphene for transportation application

## Summary

- Regenerable hydrogen storage capacities between 8.1 wt.% to 7.4 wt.% were demonstrated during six dehydrogenation/rehydrogenation cycles over NaBH<sub>4</sub>@Graphene.
- Dehydrogenation/rehydrogenation kinetics and recyclability of NaBH<sub>4</sub> were significantly improved through "graphene wrapping". Further improvement is still necessary and underway.
- A variety of structural characterizations confirmed the regeneration of hydride micro-crystallites assisted by graphene in the rehydrogenation cycle.
- Release of low level hydrogen at near ambient temperature was observed. Better understanding of the root cause could be important in improving dehydrogenation kinetics.
- Computational modeling for hydride@graphene was initiated.
- Several collaborations with HyMARC are underway.

## Acknowledgement

- This work is supported by US DOE, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office
- Project Manager: Jesse Adams
- Hydrogen Storage Program Manager: Ned Stetson

# **ADDITIONAL SLIDE**

## Accomplishment - Recent NMR Result

#### **11B MAS-NMR spectra**



#### Asterisks indicate spinning sidebands

