Development of Magnesium Boride Etherates as Hydrogen Storage Materials

Dr. G. Severa (PI) and Prof. C. M. Jensen (Co-PI)

University of Hawaii at Manoa

DOE Annual Merit Review June 5-9, 2017

Project ID # ST138

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

- Project Start Date: 10/01/2016
- Project End Date: 09/31/2019
- Percent Completion: 16 %

Barriers

Barrier	Target
Low System Gravimetric capacity	$> 7 \text{ wt\% H}_2 \text{ system}$
Low System volumetric capacity	> 40 g/L system
Low System fill times	1.5 kg hydrogen/min

Timeline and Budget

- Total Project Budget FY17-FY19: \$1,204,366
- Total Project Budget FY 17: \$270,878
- ➤ Total Recipient Share FY 17: \$ 27,086
- Total Federal Share FY17: \$243,792
- Expended DOE Funds FY: \$\$49,761.59 as of 3/31/17

Partners

- HyMARC Consortium
 - > SNL: High Pressure Hydrogenation
 - SNL: Surface Characterizations
 - LLBL & LLNL: Theoretical Modelling

RELEVANCE

Objective: Synthesize and Characterize Magnesium Boride Etherates Hydrogen Storage Materials Capable of Meeting DOE 2020 Targets.

➤ Demonstrate \geq 7.0 wt % hydrogen uptake by a MgB₂ etherate at \leq 300 °C, 700 bars 48 hrs and reversible release of \geq 2 wt% H₂ by at least one MgB₂ etherate.

Storage Parameter	Units	2020 Target	Ultimate Target
Low System Gravimetric capacity	kg H ₂ /kg system	0.055	0.075
System volumetric capacity	kg H ₂ /L system	0.040	0.070
System fill times (5 kg)	kg H ₂ /min	1.5	2.0
Min Delivery Pressure	bar	5	3
Operational cycle (1/4 tank to full)	cycles	1500	1500

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22

RELEVANCE: Recent Advances in Mg(BH₄)₂ Research

• Recent improvements in magnesium borohydride research.

	Hydrogenation			Dehydrogenation		Cycling wt%	
Dehydrogenation Product	Temp °C	P atm	time h	Temp °C	time h	Theory	Exp
MgB_2 (HP)	>400	>900	108	530	20	14.8	11.4
MgB ₂ (reactive ball milling/HT-HP)	/400	10/400	10/24	390	-	14.8	4
$Mg_{0.75}Mn_{0.25}B_2$	380	150	38	225-400	-	>11	1
$Mg(B_3H_8)_2(THF)_x/2MgH_2$	200	50	2	180	12	<2.5	
$Mg(B_3H_8)_2/2MgH_2$	250	120	48	250	120	2.7	2.1
$Mg(B_{10}H_{10})_2(THF)_x/4MgH_2/X$	200	50	2	200	12	4.9	3.8

 $Mg(BH_4)_2$ ammoniates

➢ Improved kinetics on dehydrogenation even though, NH₃, very stable BN products formed.

$Mg(BH_4)_2$ and Mg borane etherates

- Improved H₂ cycling kinetics on ether coordination, lower H₂ capacity.
- Strong coordination of ethers to magnesium at high temp.

Current state-of-the-art:

- > Better H_2 cycling kinetics (lower pressures and temperatures).
- > Lower gravimetric H_2 storage capacity.

Efforts show plausibility of greatly enhancing kinetics of Mg borohydride materials.

M. Chong, M. Matsuo, S. Orimo, C.M. Jensen Iinorg. Chem. **2015**, *54*, 4120.; G. Severa, E. Rönnebro, C.M.Jensen; *Chem. Commun.* **2010**, *46*, 421. Grigorii Soloveichik, Jae-Hyuk Her, Peter W. Stephens, Yan Gao, Job Rijssenbeek, Matt Andrus, and J.-C. Zhao, Inorg. Chem. **2008**, 47, 4290-4298 J. J. Vajo, J Graetz, V Stavila, L Klebanoff, E Majzoub, FY **2015** DOE Annual Progress Report

Relevance: Potential for Practical Hydrogen Storage Properties

 $MgB_2(ether)_x \longrightarrow Mg(BH_4)_2(ether)_x$

Mols ether/ Mol MgB ₂ (x)	0.70	0.40	0.20	0.10	0.05	
Wt % Hydrogen						
$MgB_2(OMe_2)_x$	9.4	11.1	12.8	13.8	14.3	Minimize
$MgB_2(THF)_x$	7.7	9.7	11.8	13.2	14.0	ether:MgB ₂
MgB ₂ (OCH ₂ Me ₂) _x	7.6	9.6	11.7	13.1	14.0	ratio
$MgB_2(Dioxane)_x$	7.0	9.0	11.3	12.8	13.8	
$MgB_2(polyether)_x$				>12	>12	

- Lower hydrogenation temperature.
- Lower hydrogenation pressure.
- Increase hydrogen sorption rates.
- Increase amount of cyclable H_2 at moderate temp and pressure.

Potential to improve practical hydrogen storage properties of $MgB_2/Mg(BH_4)_2$ system.

APPROACH: Synthesize, Characterize and Hydrogenate MgB₂ Etherate Materials

A. Synthesis of MgB₂ etherates by reactive ball milling and heat treatments from:

- 1. Mg borane etherates
- 2. MgB_2 , in presence of ethers.

B. Hydrogenation reactions:

UH: \leq 150 bars, \leq 300 °C and HyMARC-SNL: \leq 1000 bars, \leq 400 °C, \leq 72 hrs.

C. Characterizations: FTIR, TGA-DSC, XRD, ¹¹B and ¹H NMR, TPD-Mass Spec, X-Ray Scattering, TEM, SEM.

D. Theoretical Studies: HyMARC: LLBL and LLNL

Milestone #	Project Milestones	Quarter	Accomplished
1.1	Development of synthesis for MgB ₂ etherates	1	95%
3.1	Characterize MgB ₂ etherate by FTIR, ¹¹ B and ¹ H NMR, XRD.	2	65%
4.1	Demonstrate hydrogenation MgB_2 etherate to $Mg(BH_4)_2$ etherate.	3	50%
5.1	Demonstrate uptake of \geq 7 wt H ₂ by a MgB ₂ etherate at 300°C.	4	20%
6.1	Dehydrogenation of one hydrogenated MgB ₂ etherate	4	10%

Go/No-Go Decision: Demonstrate \geq 7.0 wt % hydrogen uptake by a MgB₂ etherate at \leq 300 °C, 700 bars 48 hrs and reversible release of \geq 2 wt% H₂ by at least one MgB₂ etherate.

Synthesis Approach 1: Synthesis from Mg Borane Etherate

1. Syntheses of MgB₂ Etherates from Dehydrogenation of Mg Borane Etherates

- Synthesis from Mg borane etherates and MgH₂
 - $Mg(B_xH_y)_z(X)_g + MgH_2$ (X = Ether)
- Synthesis from Mg borane etherates and other metal hydrides
 - ➤ $Mg(B_xH_y)_g(X)_z + MH_2$ (M=LiH, NaH)

Dehydrogenation in presence or absence of free ether

- Heat Treatment Under Pressure
- Ball Milling Pretreatment followed by Heat Treatment Under pressure
- Ball Milling Pretreatment in ether followed by Heat Treatment Under pressure

Confirm ether coordination by : FTIR, TGA-DSC, XRD, ¹¹B and ¹H NMR, TPD-Mass Spec.

Multiple approaches to MgB₂ etherates Syntheses

Synthesis Approach 2: Synthesis from MgB₂

2. Syntheses of MgB₂ Etherates from MgB₂ or its Precursors and Ethers.

a. Synthesis from MgB_2

- > MgB_2 + Ether
- > $MgB_{2-x}Y_x/Mg_{1-x}B_2Y_x$ + Ether; Y=LiH, NaH, Al or transition metal.

b. Synthesis from other MgB₂ precursors

> $MgH_2/Mg + 2B$, in presence of ethers

Synthesis Approach (in presence of ether)

- Heat Treatment Under Pressure
- Ball Milling Pretreatment followed by Heat Treatment Under Pressure
- Ball Milling Pretreatment in Ether followed by Heat Treatment Under Pressure
- Ball Milling Pretreatment followed by Ultra sonication

Characterization: Confirm ether incorporation by: FTIR, TGA-DSC, XRD, NMR, Mass Spec.

Multiple approaches to MgB₂ etherates Synthesis

Approach: Molecular Dynamic Simulations

Ab initio molecular dynamics for chemistry and coordination analysis

Direct simulation of solute-solvent interactions, investigation of formation and/or dissociation of chemical bonds, charge transfer

Reactive Quantum Molecular Dynamics Simulations of MgB_xH_y in Etherate Liquid

Classical + Quantum mechanics for environment-dependent thermodynamics

Recipes for integrating different levels of theory for the solid/solvent interfaces, Analysis of materials stability depending on particle size and solvent environment

IR Simulations to identify coordinating species.

Stability and reactivity of MgB₂ surfaces in THF

 MgB_2 -THF interface simulated in classical + quantum mechanics and ab initio molecular dynamics Change in MgB₂ surface energies by contacting with THF

Enabling twice the energy density for onboard H₂ storage

Explicit observation of bond formation between MgB₂ and THF

1. MgB₂ Etherate from Mg Borane Etherate: Synthesis from Mg Triborane THF

$$2MgB_{3}H_{8}(THF)_{2} + MgH_{2} \xrightarrow{THF} 3MgB_{2}(THF)_{x} + 9H_{2}$$

Characterization of synthesized product

- FTIR and TGA suggest formation of coordinated species.
- Direct confirmation of strongly coordinated THF to be performed by TPD Mass Spec. ¹¹

2. MgB₂ Etherates Syntheses from MgB₂

XRD and TGA indicates reactivity of ethers with Mg boride.

2. MgB₂ Etherates Syntheses from MgB₂

NMR, XRD and FTATR inconclusive in directly confirming presence of sub-stoichiometric amounts of ether. 13

Hydriding of MgB₂ Etherates Synthesized by Ball Milling Approach

Currently Ball Milled MgB₂-THF shows greatest promise at 300 °C hydrogenations.

 $MgB_2(THF)_x + H_2 \xrightarrow{1000 \text{ bar}} 300 \text{ °C. 72 hrs}$

Magnesium borohydride species

Preliminary TGA analysis of hydrogenated ball milled MgB_2 -THF indicates significant weight loss (~4.9 wt %) at 300 °C.

Typical β-Mg(BH₄)₂ DSC profile

Preliminary hydrogenations confirm for the FIRST TIME formation significant amounts of β -Mg(BH₄)₂ at 300 °C!¹⁴

Hydriding of MgB₂ Etherates Synthesized by Ball Milling Approach

Currently Ball Milled MgB₂-THF shows greatest promise at 300 °C hydrogenations.

FTIR and XRD of hydrogenated material confirm β-Mg(BH₄)₂ synthesis at 300 °C!

Hydriding of MgB₂ Etherates Synthesized by Ball Milling Approach

Currently Ball Milled MgB₂-THF shows greatest promise at 300 °C hydrogenations.

¹¹B NMR indicates mostly β -Mg(BH₄)₂

Remaining Challenges and Barriers

- Optimization of hydrogenation to 700 bar at 300 °C with \geq 7 wt% H₂ uptake.
- Complete characterization of boride etherates.
- Understanding mechanism of hydrogenation enhancement by ethers, especially THF.

Proposed Future Work

<u>FY 2017</u>

- Syntheses:
 - Continue optimizing synthesis of magnesium boride etherates.
 - Emphasis on MgB₂-THF system.
- Characterizations:
 - Characterizations of synthesized and hydrogenated MgB₂ etherates by various techniques e.g. XRD, FTIR, NMR, TGA-DSC, TEM and TPD-Mass spec.
- Hydrogenation of Mg boride etherates to Mg borohydride etherates:
 - Variable pressure and variable time studies
 - Demonstrate hydrogen uptake of 7 wt% at 300 °C.
 - Demonstrate H_2 uptake at 700 bar and 48 hrs, maintaining 7 wt% H_2 at 300 °C.
- Computational:
 - Size-dependent stability and morphology of MgB₂ clusters + particles
 - Coordination analysis of solutions and solvent-dependence of stability

<u>FY 2018</u>

- Hydrogen cycling studies of magnesium boride etherates.
 - Confirm presence of etherates through cycling.
- Understanding mechanism of kinetic enhancement by etherates.
- Determine the factors that limit H₂ cycling kinetics.
 - TEM and X-ray scattering for size and morphology effects; integrate with theory.
- Optimize cycling capacity of MgB₂ etherates.
 - Demonstrate reversible H₂ uptake \geq 8.0 wt % at \leq 300 °C and cycling stability of MgB₂ etherates.

Any proposed future work is subject to change based on funding levels

Summary: Progress and Accomplishments

- **Syntheses**: Magnesium boride etherates have been synthesized by ball milling and heat treatment techniques.
 - Characterizations: Synthesis of magnesium boride etherates is being confirmed by a variety of techniques including FT-ATR, XRD, NMR and TGA-DSC.
- Hydrogenations: Magnesium boride etherates were hydrided at ≤ 1000 bar, 300-400 °C and ≤ 72 hours.
 - ➤The ball milled Mg boride and THF samples have best performance with significant hydriding to Mg borohydride at 300 °C!

≻About 4.9 % weight loss observed from the Mg boride THF hydrided at 300 °C.

Characterization: Mg(BH₄)₂ syntheses confirmed by XRD, FTIR and DSC.

• **Theoretical Modeling**: Molecular Dynamic Simulations indicate strong coordination between THF and MgB₂.

Collaborations

Partners	Project Roles
Sandia National Laboratories (HyMARC)	 Collaborating with Dr. Stavila, Dr. White and Dr. Allendorf: > High pressure hydrogenation experiments. > Characterization of samples by XRD and TGA-DSC.
Lawrence Livermore National Laboratory (HyMARC)	 Collaborating with Dr. Wood and Dr. Kang: ➢ Molecular dynamic simulations of magnesium boride etherates.
Lawrence Berkeley National Laboratory (HyMARC)	 Collaborating with Dr. Prendergast's Group: ➢ Reactive quantum molecular dynamics simulations of MgB_xH_y in etherate liquids.
National Renewable Energy Laboratory (HySCORE)	 Collaborating with Dr. Gennett: Temperature programmed desorption. Mass spec analyses of desorbed gas.

Acknowledgement

University of Hawaii Team Prof. C.M. Jensen Mr. Stephen Kim Mr. Cody Sugai

HyMARC Consortium: Making facilities and expertise available to the Project.

NREL: Dr. Tom Gennett for assistance with TPD and Mass Spec.

PNNL: Dr. Mark Bowden for XRD of some of the samples.

EERE's Fuel Cell Technologies Office: Funding.

Technical Back-Up Slides

Kinetic Enhancement in Mg(BH₄)₂/Mg borane System

• Ether coordination decreases hydrogenation pressure, time and temp.

M. Chong, A. Karkamkar, T. Autrey. S. Jalisatgi, S. Orimo, C.M. Jensen; *Chem. Commun.* **2011**, *37*, 1330. M. Chong, M. Matsuo, S. Orimo, C.M. Jensen Iinorg. Chem. **2015**, *54*, 4120.

Motivation: High Impact of MgB₂ Etherates

No studies on hydrogen storage properties of MgB₂, (Mg + 2B), (MgH₂ + 2B) coordinated with ethers.

Strong, stable ether coordination up to 250 °C for THF!

- Complete studies on dehydrogenated forms of magnesium borohydride etherates.
- Towards search of novel ether coordinated MgB₂ for practical hydrogen storage?

2. MgB₂ Etherates Syntheses from MgB₂

A. Synthesis By Heat Treatment

NMR shows minimum changes in ¹¹B chemical shifts of MgB₂ etherate samples

2. MgB₂ Etherates Syntheses from MgB₂

B. Synthesis By Ball Milling Approach

Characterization of synthesized products.

• Ether stretches observed only in washed and dried glymes (MgB₂ triglyme and tetraglyme) samples.

• No ether peaks in THF, Dioxane and Dioxalane BM samples.

Comparison of MgB₂-THF BM 9hr and Pure MgB₂ hydrogenated Samples

