

Developing A Novel Hydrogen Sponge Polymer with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

Mike Chung, Changwoo Nam, Houxiang Li, Hannah Pohlmann

Department of Materials Science and Engineering The Pennsylvania State University

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Washington, D.C., June 5-9, 2017

Project ID ST140

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10/1/2016
- Project end date: 9/30/2019
- % complete: 25%

Budget

- Total project funding: \$887,266
- DOE share: \$682,715
- Penn State share: \$204,551
- Funding for FY2016-17: \$ 250,000
- Go/no-Go decision: Dec. 2017

Barriers

- System weight & volume
- System cost, efficiency, durability
- Charging/discharging rates
- Suitable H₂ binding energy
- High polymer surface area

Partners

- HyMARC consortium
- Sandia National Lab.
- Lawrence Livermore National Lab.
- Lawrence Berkeley National Lab.

Relevance

Research Objectives

- New H₂ sponge (microporous polymer) that can simultaneously exhibit an H₂ binding energy (ΔH) 15-25 kJ/mol, a specific surface area SSA>4000 m²/g, and a material density >0.6 g/cm³.
- Design, synthesis, and evaluation of a new class of <u>B-containing polymers</u> with specific B-moieties and repeating microporous morphology.
- Molecular simulation and advanced structural characterization to support scientific understanding and polymer materials development.

Potential Benefits and the Impact on Technology

- Polymer morphology, free volume, and surface properties can be controlled <u>at molecular level</u>.
- Polymer can be produced in large-scale with low cost, good mechanical properties, and long term stability.
- If successful, this H₂ sponge can achieve gravimetric capacity of 5.5 wt% H₂ and volumetric capacity of 40g H₂/L @ ambient temperature under mild pressure (20-100 bar).

*Relevance: 2020 DOE onboard H*₂ storage targets

System	Temp.	Gravimetric	Volumetric	
	(°C)	capacity (wt%)	capacity (g/L)	
700 Bar Compressed H ₂ system	Ambient Temp	~4.5	~25	
DOE 2020	Ambient	5.5	40	
targets	(-40/60)	(1.8kWh/kg)	(1.3 kWh/L)	

- Lower pressure operation = less cost at the station
- Fast hydrogen refill (5 kg in 3 to 5 minutes)
- Delivery pressure to fuel cell system (5-12 bar)
- Nominal thermal-management during refueling
- High efficiency (90%)
- Robotic and Durable (1500 cycles)
- Scalable and Low cost

Relevance: Three H₂ storage materials

Relevance: Porous organic polymer networks

Qiu and Zhu at al. Angew Chem Int Ed 2009, 48, 9457

PAF-1 BET: 6540 m²/g H₂ uptake: 7 wt% Total (48 bar/77K) Density: 0.315 g/cm³

Zhou at al. Adv. Mater. 2011, 23, 3723

PENNSTATE

PPN-4

BET: 6461 m²/g H₂ uptake: 8.34 wt% Total (55 bar/77K) Δ H ~4 kJ/mol

- Porous Polymer Network (PPN) can offer high surface area (>4000 m²/g)
- Polymers also offer good mechanical and thermal stability
- But low H₂ binding energy (<10 kJ/mol)

Relevance: Optimal sorbent material

Binding Energy

PENNSTATE

Bulk Density

Practical H₂ storage at ambient temperature and pressure <100 bar

Relevance: Increase H₂ *binding energy*

Relevance: Synthesis of BC_x by Precursors

Relevance: H_2 adsorption isotherms in BC_{12}

Run	N ₂ sorptio	on at 77 K	CO ₂ sorption at 273 K		
no.	Surface area (m ² /g)	Pore vol. (cm ³ /g)	Surface area (m ² /g)	Micropore vol. (cm ³ /g)	
A-1	780	0.38 <mark>(0.43)</mark> *	873	0.33	

Carbon 2010, 48, 2526-2537

PENNSTATE

JACS 2008, 130, 6668

Peaks B and C are associated with H₂ in two different types of confined regions. The Langmuir fit of peak C isotherm yields a H₂ binding energy of 11.4 kJ/mol.

0

capacity (wt%) 0.15

0.1

±[™] 0.05

J. Phys. Chem. C 2010, 114, 13705

6

-10

P (MPa)

-5

Approach: New sorbent targets

	Sorbent property			H ₂ adsorption capacity			
System	SSA (m²/g)	Density (g/cm ³)	Pore volume (cm ³ /g)	H ₂ binding energy (kJ/mol)	Pres./Temp. (bar)/(K)	Gravimetric capacity (wt%)	Volumetric capacity (g/L)
MOF 210	6240	0.25	3.6	<10	60/77	8.6	24
Porous Polymer	>4000		<1.0	<10	90/77	>7.0	
Porous BC ₁₂	1500	0.98	0.43	10-12	60/77	3.3	34
DOE and B-polymer targets	>4000	>0.6	<0.7	15-25	<100 / 273	5.5	40

New sorbent shall simultaneously exhibit H₂ binding energy 15-25 kJ/mol, SSA >4000 m²/g, material density >0.7 g/cm³.

Approach: Two New B-containing Polymer Networks

Organoborane moiety with suitable acidity (correlative ¹¹B chemical shift to H₂ binding energy)

PENNSTATE

-

IARC

Accomplishments - Condensation mechanism; 2,6-divinyl-9,10-methoxyboraanthracene monomer

Accomplishments: Addition mechanism; B-containing poly(butylstyrene) (B-PBS)

Accomplishments: FTIR spectrum of B-PBS polymer

PENN<u>STATE</u>

Accomplishments: MAS ¹¹B NMR spectrum of B-PBS polymer

Accomplishments: Pore Structure of B-PBS polymers

8 5 5

Accomplishments: H₂ Adsorption Isotherm

H₂ adsorption was measured at Sandia National Labs (Dr. Vitalie Stavila)

Summary

- Design and Synthesis of two new classes of microporous B-containing polymers.
- Structure characterization by FTIR, ¹H, ¹¹B, and ¹³C NMR spectroscopies, SEM, micropores and surface area.
- Collaboration with HyMARC core team for H₂ adsorption isotherm measurements.

Proposed future work

- Broadening B-polymer compositions
- Refining reaction conditions to control microporous morphology
- Titan TEM-EDS and FE-SEM electron microscopies to observe the microporous morphology with the elemental map.
- Correlating B chemical shifts (B-acidity) to H₂ binding energy (ΔH) and sorption-desorption cycles.

Collaboration with HyMARC / HySCORE teams

Partner	Project Roles
Sandia National Lab.	H ₂ adsorption isotherm measurements up to 200 bar H ₂ pressure and various temperatures, also the stability tests up to 1000 bar H2 pressure and various temperatures.
Lawrence Livermore National Lab.	Computer simulation of B-polymer networks to understand morphology (pore size, pore volume, surface area, density, etc.) and surface energy for H ₂ adsorption
National Renewable Energy Lab.	H ₂ adsorption isotherm measurements / Verification of our experimental results

Future Work (cont.)

	Key Milestones & Deliverables		
Phase 1	 Synthesis routes to prepare B-monomers, B-polymers, and 		
10/1/2016	 the corresponding B-networks. Collaborating with HyMARC to examine B-network structures, SSA, H₂ binding energy and adsorption capacity. 		
12/31/2017	 A B-polymer network with SSA>3000 m²/g, an average H₂ binding energy E_{ads}>15 kJ/mol, H₂ adsorption capacity 5 wt% excess (Go/No-Go criteria). 		
12/31/2017	Go/No-Go decision		
Phase 2	• Expanding B-polymer Networks by varying R spacer between		
1/1/2018	 B-moleties. Collaborating with HyMARC to understand free volume and H₂ binding energy. 		
9/30/2019	 Understanding the structure-property relationship by a systematical study. Achieving the DOE 2020 H₂ Storage Target. 		

