

Project Overview

Overview

Timeline

- Project Start: 6 May 2016
- Project End: 5 May 2019
- Percent complete: 66%

Budget

- Total project funding - ARPAe: \$2,500,000 – Cost-share: \$277,777
- Pacific Northwest National Labs

Partners

Barriers

H: Stack Energy Efficiency

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electroly

Hydrogen Protoduction^{a, b,}

lectrolyzer System Capital Cost \$/kW 430^{e, f} 300^f 300^f

2011 2015 2

\$/kg 4.2^d 3.9^d 2.3^d

%(LHV) 67 72 75 kWh/kg 50 46 44

% (LHV) 74 76 77 kWh/kg 45 44 43

Barriers addressed

F: Capital Cost

Hydrogen Levelized Cost ^d

System Energy Efficiency ^g

Stack Energy Efficiency ^h

Program Overview

- ARPA-e Contract: DE-AR0000686
- Period of Performance: 5/6/16-5/5/19, 36 months
- **Description**:
- Development of a hydrogen-iron flow cell in partnership with PNNL, capable of two operating modes:
- As a pseudo-electrolyzer for hydrogen generation
- As a hydrogen-iron redox flow cell, capable of high efficiency and low-cost grid scale energy storage
- Partners:
- Wei Wang (PNNL): Catholyte and non/low PGM catalyst development. Proof of concept regeneration cell

Problems Addressed and Targets

Program Targets

- Shunt currents losses <2% operating current
- < 0.6 mg/cm² total PGM content in hydrogen and iron electrodes
- 5-cell, 28 cm² stack cycle operation – 750 mA/cm² with 75% efficiency
- Show improvements in cell design resulting in a 25% reduction versus state of the art electrolysis

- Leverage existing PEM cell stack architecture
- voltage, higher efficiency vs. water electrolysis
- No catalyst for iron half-cell potentially
- Main challenges:
- Electrolyte cross-contamination Shunt currents
- Metal ion impact on membrane performance
- Regeneration of iron species when using the hydrogen in pseudo electrolyzer mode

Project Objectives

- Develop electrolyte concentration and composition through structure, property, and performance studies
- Develop mitigation strategies for cross-over (H₂ and Fe) Refine electrode manufacture for loading reductions and scale-
- Develop electrode materials for porosity, conductivity, surface area, and redox activities
- Evaluate Feⁿ⁺ poisoning tolerance Conduct CFD modeling to determine optimal flowfield/shunt
- design
- Operate a 28 cm² stack in pseudo-electrolysis and flow battery
- Technoeconomic analysis

Approach: Overall

t model Development plete chemical compatibility analysis define cell stack materials that redu wn-select catholyte that achieves lo nerative conversion efficiency to su

tify and evaluate 3 alloy catalysts f oility of <0.1mg/cm² Pt content. tify and evaluate 3 experimental cata

bility of <0.075mg/cm² Pt content. onstrate shunt current reduction ed flowfield design.

nstrate 3-cell 28cm² test stand e; <.6mg/cm² Pt content in hyd mized cathode flowfield. (1000hr test) al Report Completion and Submission

P.I. Name: Kathy Ayers **Presenter: Christopher Capuano**

ARPAe: Dual Mode Energy Conversion and Storage Flow Cell

Background: Flow Battery Technology

 Iron electrolyte allows for production of hydrogen at lower Enables non/low-PGM catalysts for hydrogen half-cell Enables cheaper materials for cell embodiment

	Date	Status	
	8/5/2016	Complete	
support stack development ell cost by 25% compared to	11/5/2016	Complete	
Fe permeation, and meets 500 mA/cm ²	2/5/2017	Complete	
HER/HOR activity that have	8/5/2017	Complete	
s for Fe ^{2+/3+} activity that have	8/5/2018	Complete	
25% using computationally	11/5/2018	In-Progress	
ation in pseudo electrolysis and iron electrodes and	2/5/2019	In-Progress	
	5/5/2019	Not Yet Started	

Electrode Manufacture: Options

- Ultrasonic spray deposition and screen printing MEA fabrication
- High throughput, manufacturing friendly techniques
- > 600 cm² active area capable

Ultrasonic printer at Proton OnSite (left) and nozzle with GDL material (right).

- Degradation of electrochemical surface area (ECSA) after testing in the Fe²⁺ electrolyte was observed for all PGM catalysts
- ECSA losses on Pt-based catalysts were 7~25%
- Pd/C catalyst ECSA loss was 93%

Catalyst	ECSA (n		
Catalyst	Before Fe ²⁺ test	After Fe ²⁺ test	LOSS (%)
20% Pt/C	51.9	45.8	12%
50% Pt/C	65.1	60.8	7%
Pt-Black	6.8	5.1	25%
Pd/C	16.1	1.2	93%

Approach & Accomplishments: Material Compatibility Membrane & Stack Hardware

- for compatibility

Approach: Low Loaded HER Electrode Development

- Development focused on electrolyte composition
- Targets of >150 mS/cm
- >1M active material concentration
- Stability up to 60C
- 750 mA/cm² electrolyzer operation
- Catholyte composition evaluation assessed acid concentration/type on conductivity
- Evaluate carbon electrode and activity improvements through electrochemical post-processing

- All program milestones completed to date • Full-system developed with automated cycling
- capability
- 30 bar hydrogen generation pressure
- Configured for multi-cell support
- Up to 80°C operation for improved efficiency
- Testing has shown stability in charge mode of operation for 11 days of continuous operation

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by **Battelle** Since 1965

Accomplishments: Acid Electrode and Catholyte Development

The conductivity of electrolyte #2 is almost two times higher than that of electrolyte #1

N211 membrane Proton GDE and Electrochemical modified CP-E Flow rate: 120 ml/min oton serpentine flow field (9 cm²) perature : 22 °C

Conclusion: High conductivity of electrolyte can support high current density of 1000 mA/cm²

- High electrochemical performance carbon electrode:
- High porosity and tortuosity for mass transfer;
- High hydrophilic properties for liquid access;
- High active surface for iron redox reaction (catalytic properties)

sity and tortuosity; (2) enhance hydrophilicity; (3) increase catalyti

ne schematic description of electrochemical modification process of CP-ESA (a); The SEM image of electrochemical modified CP-ESA carbon electrode (b) and the pristine CP-ESA (c). Results: No morphology change is observed before and after electrochemical

nodification proces

Electrolyte conductivity (Room Temperature)

	Conductivity	Storing time at 80 °C (day)	Conductivity (mS/cm)				
Electrolyte composition			#1	#2			
	(mS/cm)	0	445	406			
Electrolyte #1	294	5	459	400			
Electrolyte #2	548	10	459	442			
	540						

Test condition:

N211 membrane Proton GDE and Electrochemical modified CP-ESA (9 low rate: 120 ml/min ton serpentine flow field perature : 40 °C

Conclusion: The voltage plateau at current density of 750 mA/cm² with 9 cm² serpentine flow field is around 0.9 V, alidating that the improved conductivity of iron solution is an important factor to benefit the charge process.

Accomplishments: Full System/Stack Testing

Project Summary

• Testing at PNNL has developed an acid electrode and electrolyte solution capable of 750 mA/cm²

- Principal Investigator (PI): Kathy Ayers, customer interface, high level oversigh
- Program Manager: Chris Capuano, subcontract management of PNNL, program technical oversight, government reporting, budget tracking, and resource planning
- **Chemical Engineer:** Luke Wiles, characterize catalyst formulation and deposition techniques. Perform materials operational characterization
- **Systems Engineer**: Andrew LaMarche, system development
- Engineering Technician: Ed Demarest, system fabrication
- Mechanical Engineer: Eric Scheuing, support cell design
- Principal Engineer: Andy Roemer, cell architecture and system component analysis
- PNNL Principal Investigator: Wei Wang