Protonic Ceramics for Energy Storage and Electricity Generation with Ammonia

Hossein Ghezel-Ayagh, Emi Leung, Fred Jahnke, Mick Barton, Jonathan Malwitz, Micah Casteel, Scott Corey: FuelCell Energy (FCE) Neal Sullivan. Rvan O'Havre. Robert Kee: Colorado School of Mines (CSM)

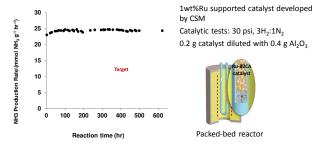
Project goals:

Develop reversible proton-conducting ceramic cells that **synthesize ammonia** for energy storage, and also, **convert ammonia into electricity** for power generation.

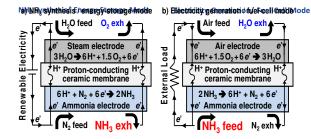
Technology development path:

1. Integrate ruthenium based catalyst within proton-conducting cells for ammonia production (energy storage mode) and decomposition (power production mode).

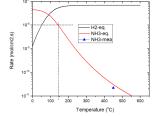
2. Develop reversible proton-conducting ceramic cells that convert ammonia into electricity for power generation, or synthesize ammonia for energy storage.

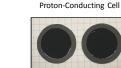

3. Develop fabrication processes for cost-effective manufacturing of scaled-up protonic ceramic cells.

4. Demonstrate operation of a proton-conducting stack prototype manufactured using commercially relevant processes.


5. Complete detailed techno-economic analyses that maximize the value proposition of the reversible ammonia system.

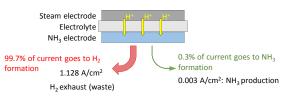
6. Pathways for proton-conducting ceramic technology applications for ammonia synthesis.


1. Ru- catalyst shows excellent stability over 600 hours of continuous operation

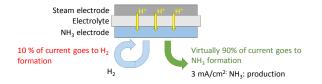


2. Cell Configurations: reversible operation

2.1 Ammonia-production cell with integrated catalyst in NH_3 electrode



2.2 Original design: efficiency and production are limited by low equilibrium conversion


Our target of 1 x 10^{-8} mol NH₃ / cm²·s

- Most H⁺ flux goes to H₂ due to low equilibrium-conversion rate.
- H₂ is swept out with exhaust gas.

2.3 Efficiency is greatly improved by H₂ recirculation

- Run high current at startup to generate excess H₂, then recirculate.
- At steady state, provide only enough current to replenish consumed H₂.

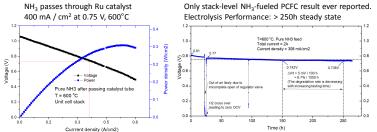
2.4 Comparisons of results with references reflect CSM's record-high $\mathsf{NH}_3\text{-}\mathsf{production}$ rates

Table. Summary of ammonia production rate from literature studies and the recent CSM work

Materials Set:	NH ₃ production rate	Conversion	Temp.
Steam Electrode Electrolyte NH ₃ Electrode	(mol [·] S ⁻¹ ·cm ⁻²)	efficiency (%)	(°C)
Pd SrCe_{0.95} Yb_{0.05} O_{3\cdot\delta} Ru $^{[1]}$	9.10 x 10 ⁻¹⁴	~0.00015	650
LaCsFeNi (Li,Na,K)CO3-GDC LaCsFeNi [2]	1.20 x 10 ⁻¹⁰	0.06	400
Pt BZY Pt ^[3]	< 1 x 10 ⁻¹²	< ~0.006	550
LSCF BZY LSCF [3]	8.50 x 10 ⁻¹¹	0.33	550
CSM Electrolyte supported electrolysis	3.29 x 10 ⁻¹¹	0.06	600
CSM Anode supported electrolysis	8.74 x 10 ⁻⁹	TBC*	600
CSM Anode supported electrolysis cylinder gas	4.06 x 10 ⁻⁸	твс	600
CSM Reactor: cylinder gas only	9.65 x 10 ⁻⁷	твс	500

[1] A. Skodra, M. Stoukides, Solid State Ionics 180 (2009) (23) 1332.

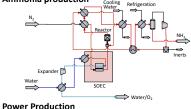
[2] R. Lan, K.A. Alkhazmi, I.A. Amar, S. Tao, *Electrochimica Acta* 123 (2014) 582.
[3] D.S. Yun, J.H. Joo, J.H. Yu, H.C. Yoon, J.-N. Kim, C.-Y. Yoo, *Journal of Power Sources* 284 (2015) 245.
* TRC: to be calculated

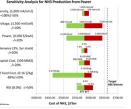

TBC: to be calculated

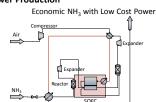
arpa.e

2.5 Excellent performance from an NH₃-fueled unit-cell stack

3. & 4. Established success in scale-up, manufacturing & commercialization of fuelcell and allied electrochemical systems

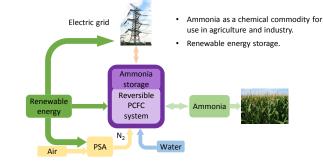





- Pilot manufacturing of solid oxide fuel cell (SOFC) and stacks.
- Tape casting/screen printing/co-firing fabrication process has been scaled up to 1000 cm².
- Production volumes of 500 kW annually.


5. Techno-economic analyses: FCE evaluates value proposition of reversible NH₃ cells

Ammonia production



6. Pathways for PCFC technology applications for ammonia synthesis

