High Rate Ammonia Synthesis by Intermediate Temperature Solid-state Alkaline Electrolyzer

Introduction

Ammonia Synthesis Methods

- (1) Haber-Bosch Process
- ➢ N2 and H2 reacting at 15−25 MPa and between 400−500°C
- > Energy and capital intensive approach
- (2) Electrochemical synthesis
- > Low temperature, pressure, energy input, and emissions
- > Enables networks of distributed scale and near point-of-use

U Issues of Current Electrochemical Synthesis Methods

- > Only molten salt system operating at intermediate temperature range
- > Low ammonia production rate due to lack of highly active NRR catalyst
- Low selectivity of nitrogen reduction due to HER
- > Poor stability using liquid based and proton-conducting electrolyte

Our Approach

We will develop a game-changing intermediate temperature (100-300°C) solid-state alkaline electrolyzer (ITSAE) for high-rate ammonia production from nitrogen/air and steam electrolysis based on following innovations: (1) Cost-effective and intermediate temperature highly OH⁻ conducting

- solid membrane
- (2) Nanostructured Fe2O3-based bimetal oxide nitrogen reduction reaction (NRR) cathode catalyst
- (3) Advanced solid composite electrode structure
- (4) Noble metal-free oxygen evolution reaction (OER) anode catalyst

Work Plan

- \triangleright Develop large ITSA membrane with thickness of $\leq 50 \mu m$ and ASR of ≤ 0.125 $\Omega \ \mathrm{cm}^2$
- > Develop highly active and selective Fe based bimetallic oxide NRR cathode
- > Use DFT methods to elucidate elementary reaction mechanisms and guide catalyst design
- > Optimize MEA and ITSAE operation conditions
- Demonstrate ITSAE stack with productivity of 100 g/day
- > Techno-economic- analysis and Technology to Market

Acknowledgement: This project is supported by DOE ARPA-E REFUEL-DE-ARoooo818). We thank Drs. Grigorii Soloveichik, Julian Sculley, and Madhav Acharya.

STORAGENERGY ENERGY STORAGE SOLUTIONS

Storagenergy Technologies Inc.: Feng Zhao, Jared Liao and Byron Millet

Subcontractors: Iowa State University: Wenzhen Li, Yifu Chen; Pennsylvania State University: Michael Janik, Yawei Lee

Technical & Business Contact: Feng Zhao, 801-386-8555, fzhao@storagenergy.com

 \succ The ASR of MoTP/PTFE membrane is around 0.52 Ω cm²

DFT calculation shows that Ni dopant facilitate N2RR in a robust way

Final Targets	
Phase I (Completed)	Phase II
5-cm ² single cell	5-cm ²
>40	
≤300	
5.0	
≥20	
≥3.5x10 ⁻⁹	≥]
_	
	Final Phase I (Completed) $5-cm^2$ single cell >40 ≤ 300 ≤ 300 $\ge 3.5x10^{-9}$ -

