

LABORATORY

2018 DOE Hydrogen and Fuel Cells Program Review

Tailored High Performance Low-PGM Alloy Cathode Catalysts

Pls: Vojislav R. Stamenkovic Nenad M. Markovic

Materials Science Division

Argonne National Laboratory

Project ID# FC140

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start: 10/2015
- Project end: 10/2018

Budget

- Total Project funding \$3.25M
- Total DOE funds spent: \$ 2.93M
- Funding for FY18: \$ 900K

Barriers to be addressed

- 1) **Durability** of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Partners:

- Argonne National Laboratory MERF CSE Greg Krumdick, Debbie Myers
- Oak Ridge National Laboratory Karren More
- National Renewable Energy Laboratory Kenneth Neyerlin

Project Lead:

• Argonne National Laboratory - MSD – V. Stamenkovic / N. Markovic

Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h			
Characteristic	Units	2011 Status	2020 Targets
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44
Non-Pt catalyst activity per volume of supported catalyst ^{e.1}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

ANL Technical Targets

- Total PGM loading 2020 DOE target 0.125 mg_{PGM}/cm²
- Loss in initial mass activity 2020 DOE target <40%
- Mass activity @ 0.9V_{iR-free}
 2020 DOE target 0.44 A/mg_{Pt}

Approach

Materials-by-design approach - to design, characterize, understand, synthesize/fabricate, test and develop tailored high performance low platinum-alloy nanoscale catalysts

- Rational synthesis based on well-defined systems
- Addition of the elements that hinder Pt dissolution
- Activity boost by lower surface coverage of spectators
- Prevent loss of TM atoms without activity decrease

Approach

Project Management

Task 1 - Well-Defined Systems (WDS) Task 2 - Synthesis of Materials (SYN) Task 3 - Electrochemical Characterization (ECC) Task 4 - Novel Support/Catalyst (SUP) Task 5 - Scaling Up of Materials (SCA)

- From fundamentals to real-world materials
- Simultaneous effort in five Tasks

- Go-No Go evaluation
- Progress measures are quarterly evaluated

Task 1 Accomplishments: RDE-ICP/MS of Pt/C Nanoparticles

Surface Structure	Pt(111)	Pt(100)	Pt(110)	Pt-poly
Dissolved Pt per cycle [µML]	2	7	83	36

Detection Limit: 0.8 µML of Pt

Monodisperse 20% Pt/C NPs 3 and 5nm

In-Situ RDE-ICP/MS

Correlation between Surface Structure - Activity – Dissolution

2.7+/-0.5 nm

5.1 +/- 0.5nm

Task 1 **Accomplishments and Progress:**

Argonne

RDE-ICP/MS of Pt/C Nanoparticles

Task 1 Accomplishments and Progress: EC-ICP-MS Pt-Surfaces effect of substrate

Task 2 Accomplishments and Progress: Pt₃Au synthesis and characterization

in collaboration with K.L. More, ORNL

Task 1-2 Accomplishments and Progress: EC-ICP-MS Pt₃Au nanoparticles

Task 2 Accomplishments:

Pt₃Co catalysts Structures

in collaboration with K.L. More, ORNL

[110]

ОАК

RIDGE

Annealing sequence of Pt₃Co NP

HAADF at different T and t(min)

HAADF and EDS elemental mapping

3-D model (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001)

(001)

L.F. Allard, N.M. Markovic, and V.R. Stamenkovic Nature Communications 6 (2015) *No.* 8925 Dynamic of structural and chemical evolution at the atomic scale of Pt₃Co NPs during in-situ annealing distinct behavior at critical stages:

{111}, {110}, {100} facets play different roles during the evolution of structure

formation of a Pt-Skin shell with an alloyed disordered core;

the nucleation of ordered domains;

the establishment of an ordered $L1_2$ phase followed by pre-melting

Accomplishments and Progress: In-Situ EC-ICP-MS Pt-Alloys Intermetallic Task 1

0.6

0.4

0.2

0.0

Pt Co

Specific Activity (mA cm⁻²)

Task 2-3 Selected Nanostructures: *Pt-Alloys, Solid, Porous and Hollow Structures*

in collaboration with Karren More, ORNL

13

Task 5 Accomplishments:

Process R&D and Scale Up

collab. with Greg Krumdick, ANL -MERF

New Material		Timeline & Milestones	
Material Performance Evaluation	Research Chemistry	M 1-2	 Hot-injection was avoid using one-pot synthesis. Benzyl ether as solvent. No Go
Go No Go Go No Go Research Chemistry Scale-up Feasibility Select New Material Proof of Concept Material Specification Material Performance Validation		M 3	 3) Phenyl ether as solvent. 4) Best synthesis condition was established. 5) Reproducibility was confirmed. Go
	1 st stage scale up	M 4	 6) 1st stage scale up (1 g / batch) was successful. 7) New method to load PtNi nanoparticles on carbon and its separation from solvent was developed.
		M 5-6	 8) Reproducibility of 1st stage scale up was confirmed. 9) Pre-annealing process applied.
		M 6-7	10) Acid leaching process was modified. Go
2nd Stage of Scale-up Material Performance	2 nd stage scale up	M 8-9	 11) The 2nd stage scale up (5 g / batch) was successful. 12) Acid leaching process was established.
Go No Go		M 10	13) The 2 nd stage scale up is reproducible . Go
Technology Transfer Package		M 11- 12	14) MEA performance; New IP application ; Sample send out; Manuscript submitted.

Task 5 Accomplishments:

Process overview: 0.1 g vs. 5 g

Task 3-5 Accomplishments and Progress: Scale-up of Excavated Nanoframes 0.3g

Nanoframe

Excavated nanoframe

Excavated nanoframe-Further reducing Ni precursor amount

Accomplishments and Progress: Scale up of Nanopinwheels 0.4 g Task 3-5

5X scaled up PtNi Nanopinwheels keep the same morphology 5X scaled up PtNi Nanopinwheels maintain high performance

2018			
2010	0.90 V	0.95 V	
5X scale up	8.2	1.14	
Nanopinwheels	8.8	1.3	

Scale up of nanocages 0.6g

20 nm

20 nm

Task 5Accomplishments and Progress:

Scale up-Flow reactor

Flow reactor at MERF, ANL

- > Fast mass and heat transfer.
- > Rapid optimization of reaction parameters.
- > Easy scalability.

- > Accurate control of reaction temperature and duration.
- > Low usage of reagents in the optimization process.
- > Capability for online monitoring.

Task 4-5Accomplishments and Progress:

Different Supports & Loadings

Same loading but different particle densities \iff Different accessible carbon surface areas

Task 3,4,5 Accomplishments and Progress:

Different Supports & Loadings

Task 4-5 Accomplishments and Progress: Particle deposition on carbon support

in collaboration with K.L. More, ORNL

Task 2-3Accomplishments and Progress:

scaled PtNi in 50 cm² MEA

in collaboration with K.L. More, ORNL

z-stack (cross-sections)

clipping animation

Task 3-5 Accomplishments and Progress: scaled Nanopinwheels in 5cm² MEA

in collaboration with Debbie Myers, ANL /CSE and Karren More, ORNL

Cathode Loading: 0.03 mg-Pt/cm^2 I/C = 0.8, H_2/O_2 (or Air), 80° C, 150 kPa(abs) 100%RH

After acid treatment an increase on the MEA performance Activation condition, held certain constant voltage for more 12 hours until reach the best performance

(H₂-O₂, 80C, 100%RH, 150kPa_(abs)) from high-low current

Mass activity at 0.9V: ~0.5 A/mg with 0.03 mg/cm² Pt loading

Task 3Accomplishments and Progress:

in collaboration with Kenneth Neyerlin, NREL

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray coated at NREL 0.9 I:C
- Cathode loading 0.046 mgPt/cm²

150 kPa, 100% RH, 80°C H₂/Air, 50 cm^{2,}

Developed PtNi/HSC: i_m^{0.9V} ~ 500 mA/mg_{Pt} vs. to ~300 mA/mg_{Pt} for 50 wt% Pt/HSC (TKK)

PtNi/HSC: i_s^{0.9V} 920 μA/cm²_{Pt} vs. 480 μA/cm²_{Pt} for Pt/HSC (TKK)

PtNi/HSC shows improved performance at high current density / Improved non-Fickian transport

Task 3Accomplishments and Progress:

in collaboration Neyerlin, NREL

150 kPa, 100% RH, 80°C H₂/Air, 50 cm^{2,} N211

- PtNi/HSC shows improved performance
 - Both at high and low potential
 - For both raw cell voltage and HFR-corrected cell voltage
- Performance improvement is significant at low potential (transport limited regime) when normalized to ECSA
 - Suspect improved non-fickian transport

Task 3Accomplishments and Progress:scaled PtNi in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

Improved Non-Fickian Transport Resistance

 By first synthesizing the nanoparticles then supporting them on HSC, the particles are preferentially located on the surface of the carbon

CO stripping as a function of RH reveals that the majority of Pt sites are located on the carbon surface

resistance E 1.2 △ Pt/Vu PtCo/HSC Non-Fickian O₂ **Transport Resistance** • Pt/HSC 0.9 **O PtNi/HSC ANL** 0.6 0.3 0 0 25 50 75 100 $f_{Pt} [cm^2_{Pt}/cm^2_{MEA}]$

Reduced non-Fickian transport

Limiting current measurements indicate that PtNi/HSC has significantly reduced non-Fickian transport resistance relative to other highly active electrocatalysts (PtCo/HSC)

Task 3Accomplishments and Progress:

scaled PtCo/Vulcan in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

150 kPa, 100% RH, 80°C H₂/Air, 50 cm² Ultrasonic spray coated at NREL 0.5 I:C Cathode loading 0.035 mgPt/cm2

- PtCo/Vulcan shows improved performance
- Both at high and low potential region
- For both raw cell voltage and HFR-corrected cell voltage
- Performance improvement is significant at low potential (transport limited regime)

Responses to some reviewers comments

Question 1: Approach to performing the work

- The approach is both aggressive (multiple tasks in parallel) and well designed, since it strives to address many potential risks (in a highly complex system) at early stages.
- The project team uses world-leading resources and capabilities to design catalysts from a fundamental point of view.

Question 2: Accomplishments and progress toward DOE goals

This project had impressive results in the past year in all key areas. (1) Fundamentals: The previous development of the RDE-inductively coupled plasma mass spectrometry (ICP-MS) was a great contribution, and it is great to see the group using this tool effectively on these new catalysts, with interesting results. (2) Synthesis: The core team has continued to make excellent progress in developing new nanostructures.
(3) Scale-up: The progress here is especially impressive. It is unclear whether this new one-pot process can be used to make nanoframes as well as nanoparticles. (4) MEA performance: It is also great to see MEA results, which are impressive when one considers how challenging it is to make a good MEA with a new catalyst.

- A year later, they have even more new catalysts, more evidence of their potential, and more poor fuel cell performance. More effort should have been put into demonstrating that RDE results can translate into MEA results, and if not, why not.

Much more has been accomplished over the last year in testing of our catalysts in 50cm² MEAs. All of them exceeded DOE technical target and labeling our performance with "poor" has more to do with the reviewer's ability to perform an unbiased review.

Question 3: Collaboration and coordination with other institutions

- The collaboration with the Fuel Cell Consortium for Performance and Durability to obtain the MEA results is especially commendable.

The catalyst community position should simply be that RDE is a good screening tool and that they would welcome improved methods to translate this into MEA performance projections by those who can contribute to this challenging task.

The project has constant interaction among the participants including the OEMs, which does not necessarily mean that all results can be disclosed. During the TechTeam meetings much more has been shared.

Project weakness

- Activity of the catalyst in MEAs is approximately 10 times below RDE activity. Apparently, there is limited work on MEA-level testing and characterization. MEA testing was a project weakness.

We are making constant progress in MEA testing and understanding similarities and differences between RDE and MEA.

Recommendations for additions/deletions to project scope

- More MEA work should be planned. - The project should look for new collaboration at the international level

Additional MEA testing are confirming improvement in performance and more international collaborations are being launched.

Collaborations

- Differences between RDE and MEA, surface chemistry, ionomer catalyst interactions
- Temperature effect on performance activity/durability
- High current density region needs improvements for MEA
- Support catalyst interactions
- Scale-up process (one pot and flow reactor) for the most advanced structures

1) Durability of fuel cell stack (<40% activity loss)

2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

- Alternative approaches towards highly active and stable catalysts with low PGM content
- Tailoring of the structure/composition that can optimize durability/performance in Pt-alloys
- Synthesis of tailored low-PGM practical catalysts with alternative supports
- Structural characterization (in-situ XAS, HRTEM, XRD)
- Resolving the surface chemistry in MEA
- Electrochemical evaluation of performance (RDE, MEA)
- In-situ durability studies for novel catalyst-support structures (RDE-ICP/MS)
- Scale-up of chemical processes to produce gram quantities of the most promising catalysts

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

US00787173882 (12) United States Patent Stamenkovic et al. (19) Patent No.: US 7,871,738 B2 (43) Date of Patent: Jan. 18, 2011		T2N	/
	 (3) NAMERGREATED SURFACES AS CALADASTS FOR FUEL CELLS (3) Inventors: Vojika Samenkovic, Nigerville, IL (CS) November 2010; 201		Auto OEMs
	(US00924017782 (2) United States Patent (2) Stamenkovie et al. (4) Patent No.: US 9,246,177 B2 Stamenkovie et al. (4) Patent Patent: Jan. 26, 2016		FY18
	(4) BIMETALLC ALLOY ELECTROCATAINSTS WITH MULTIA/ERED PLATENDASANN (5) References Cited (6) SUBACUS U.S. PATENT DOCUMENTS (7) Inventers: Vigibar R. Stamebacherk, Napovella, IL. 2572,773 A. 1300 Dub et d. (72) Inventers: Vigibar R. Stamebacherk, Napovella, IL. 2572,774 A. 1300 Dub et d. (73) Inventers: Vigibar R. Stamebacherk, Napovella, IL. 2572,774 A. 1300 Dub et d. (74) Napovella, IL. 2572,774 A. 1300 Dub et d. 2572,774 (73) Anigner: UChegos Argume, LLC, Chiengs, IL. 2503,774 4. 2520 Materia. 5223 (15) U.S. U.S. 2514 2514 2512 Materia. 5223		2 NDA signed

• Constant build up of IP portfolio 6 issued patents, 5 pending

S U M M A R Y

Approach

- From fundamentals to real-world materials
- Focus on addressing DOE Technical Targets
- Link between the performance measured in RDE vs. MEA
- Rational design and synthesis of advanced materials with low content of precious metals

Accomplishments

- Dissolution of Pt for different particle size distributions of Pt/C: the advantage of monodisperse
- Resolved the mechanism of diminished Pt dissolution for Au subsurface
- Designed of highly durable NPs: Applied the knowledge from well-defined surfaces to nanoparticles
- "No-Dissolution" Proof of Concept in Highly Durable NPs: Synthesis and Characterization of Pt₃Au/C NPs
- Well-Defined Pt-Alloy intermetallic systems are more active and durable vs. solid-solution Pt-Alloys
- Scaled four nanoarchitectures at the gram level quantities
- Applied different carbon supports
- Effective placement of particles exclusively on the high surface area carbon surface no buried particles
- PtNi with multilayered Pt-Skin and Nanopinwheels exceeded DOE 2020 Technical Target for mass activity in MEA
- Two patent application in FY18, 2 articles submitted and 6 presentations at conferences

Collaborations

- Collaborative effort among the teams from four national laboratories is executed simultaneously in five tasks
- Ongoing exchange with Auto-OEMs and stake holders
- Numerous contacts and collaborative exchanges with academia and other national laboratories

Dr. Dongguo Li (RDE, synthesis, thin films) Dr. Haifeng Lv (RDE, synthesis, MEA) Dr. Nigel Becknell (Synthesis, RDE) Dr. Rongyue Wang (scale up synthesis, RDE, MEA)

Partial time Staff:

Full time postdocs:

Dr. Pietro Papa Lopes (RDE-ICP-MS), Krzysztof Pupek

Publications and Presentations

3 Publications 3 Presentations 2 patent applications

