Platinum Monolayer Electrocatalysts

Radoslav Adzic – Original PI, Senior scientist emeritus 2018 Jia Wang – Presenter and Current PI Miomir Vukmirovic and Kotaro Sasaki – Project Co-PIs

Co-workers: Zhixiu Liang, Liang Song, Zhong Ma, and Kurian Kuttiyiel

DOE Hydrogen and Fuel Cells Annual Merit Review June 14, 2018

Brookhaven Science Associates This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: September 2015 End: October 2018

Barriers

A. Catalysts' Durability:
< 40% loss in activity after 30,000 cycles
B. Catalysts' Performance:
Catalyst activity; ≥ 0.44 A/mg_{PGM}
C. Catalysts' Cost:
PGM loading; ≤ 0.125 mg PGM /cm²

Partners

Los Alamos National Laboratory

Collaborators

General Motors Toyota M. C. N.E. CHEMCAT Co. Korean Institute for Energy Research University of Virginia

Budget

Funding received in FY2017: \$700,000 FY2018: \$600,000

Relevance

Project objective:

Developing active, durable core-shell catalysts for the oxygen reduction reaction (ORR) that meet the DOE technical targets for 2020.

Activities in this period: R&D on 5 electrocatalyst designs

4g-batch synthesis and MEA tests of PtNiN/C catalysts Four new nanostructured core-shell catalysts

Catalysts' performance targets:

Те	sts	MYRDD Table 3.4.7 Technical Targets: Electrocatalysts for Transportation Applications				
	Characteristic		Units	2020 Target	↓	
	•	PGM content at rated power	g _{PGM} /kW _{gross} at 150 kPa (abs)	0.125		
		PGM loading	mg _{PGM} /cm² total	0.125		
3 of 5	×	Mass activity	A/mgPGM at 900 mV $_{\rm iR-free}$	0.44		
5 of 5	√	Electrocatalyst stability (0.6 \leftrightarrow 0.95 V)	% mass activity loss after 30K cycles	<40	•	
		Loss at 0.8 A/cm ² (0.6 \leftrightarrow 0.95 V)	mV loss after 30K cycles	<30		
1 of 1	\checkmark	Support stability (1.0 \leftrightarrow 1.5 V)	% mass activity loss after 5K cycles	<40		
1		Loss at 1.5 A/cm 2 (1.0 \leftrightarrow 1.5 V)	mV after 5K cycles	<30		

One catalyst tested for support stability on RDE

DDE

PGM activity & loss after AST measured with H_2/O_2 on MEA

Low-loading, HCD performance vs. Pt/C with H_2 /air on MEA

Approach

Materials: - Nitriding to stabilize Ni (Topic 1)
 Stable, PGM-free cores (Topics 2 – 5)

Screened many and focused on four most promising ones

- Advanced core-shell nanostructures:
 - Pt(ML) on (111) faceted Pd nanosheet (Topics 2 3)
 - Pt(111) on Co₂P(001) faceted nanorod (Topic 4)
 - NbO_x core embedded in C, with Pt on top (topic 5)
 - 1. PtNiN RDE, gram-batch synthesis, multiple MEA tests
 - 2. Pt_{ML}Pd_{NS}WNi RDE, gram-batch synthesis, MEA test
 - 3. Pt_{ML}Pd_{NS}NbN RDE, gram-batch synthesis, MEA test scheduled
 - 4. Pt₍₁₁₁₎Co₂P_{NR} RDE

NbO.

5. Pt_{top}-NbO_x-C RDE (plus 5K 1-1.5 V support durability)

MEA tests for use at cathode and anode scheduled

Detailed in the next ten slides of accomplishment and progress

4

1. PtNiN/C: 3 g/batch synthesis

Pt, Ni precursors and Vulcan XC72 mixed in an organic solution, dried in vacuum at 60 °C, and annealed in NH_3 (510 °C for 2h).

Average size 3.5 nm.

Well dispersed on carbon

ORR activity and durability further improved by the new one-step synthesis method

cycle #	MA (A/mg)	E _{1/2} (mV)	ECSA (m²/g)		-
0	0.91	932	88.5	A	-
10k	0.86	932	83.8	Е _	-
20k	0.78	928	78.9		-
30k	0.74 -18 %	919 -13 mV	77.2 -13 %		-

The one-step method yielded higher mass activity (0.91) than that (0.86) reported previously using the two-step method. Loss after 30K cycles 18% also better than the target of <40%.

Accomplishment

PtNiN/C: MEA tests by GM and LANL Accomplishment

>2 times of Pt/C activity at 0.9 V by GM

Pt/C		
0.120 mg _{Pt} cm ⁻²		
MA ECSA /mg) (m²/g)		
.169 74		
.093 27		
.058 18		
66 % -76 %		

cycling: 3s@0.6V, 3s@0.95V

Activity loss (-19%) is 1/3 that of Pt/C, and meets the target of < 40% loss.

PtNiN/C: Low load, HCD with H₂/air at LANL Accomplishment

After 30K cycles, no voltage loss; Target < 30 mV at 0.8 A cm⁻² met.

Current at 0.6 V with low loading more than doubled that of Pt/C

Same low cathode Pt loadings determined by XRF.

Anode catalyst ETEK 20 wt.% Pt/C (0.1 mg_{Pt}/cm²).

Square cycles: 0.6 V (3s) to 0.95 V (3s) at 80 °C, backpressure 105 kPa (abs)

2. Pt_{ML}Pd_{NS}/WNi/C (4 g synthesis)

Preparation procedure:

- > W & Ni precursors & XC72 mixed in chloroform
- > The dried mixture annealed in H₂
- Pd deposited by bubbling CO gas
- Pt deposition via Cu UPD

STEM/EDX of 4g/batch Pt_{ML}/Pd_{NS}/WNi/C

- Broad distribution of W and Ni on carbon surfaces
- WNi were well covered by Pd nanosheets
- Pt goes on top of Pd.

Scale-up synthesis:

- 0.8 g per batch of Pd/WNi/C made at BNL
- Pt ML deposition 1 batch of 4 g Pd/WNi/C by NECC

Formation of (111) faceted Pd nanosheet (NS) on WNi by CO gas

Sharp Cu UPD peaks indicate large Pd(111) facets; good for ORR.

Gong, et al, J. Electroanal. Chem. 2011, 662, 213

Accomplishment

Pt_{MI} Pd_{NS}/WNi/C performance

Accomplishment

No discernible loss of ORR activity after 30k cycles for $Pt_{ML}/Pd_{NS}/WNi/C$ on RDE, while $\Delta E_{1/2}$ = -86 mV after 10k cycles for $Pt_{MI}/Pd_{NS}/C$.

Pt _{ML} /Pd _{NS} /W	Pt _{ML} /Pd _{NS} /C	
Small batch	4 g batch	Small batch
1.96 Pt 0.16 PGM	0.68 Pt 0.22 PGM	2.52 Pt 0.13 PGM

MEA test by NECC: No loss of MA at 0.9 V

i, mA/cm²

3. Pt_{ML}Pd_{NS}/NbN/C (4 g synthesis)

Accomplishment

- ✓ Synthesized by ammonolysis of NbCl₅ and nitridation in NH₃ at 600°C ~ 800°C
- ✓ The conductivity NbN NPs is ~20 S/cm, as high as carbon support
- ✓ NbN nanoparicles are interconnected into aerogel-like nano-frames with 5 – 15 nm pores & high surface area (63.5 m²/g)

Pt_{ML}Pd_{NS}/NbN/C (small batch)

NbN nano-frames

20-60 nm Pd nanosheets

Pd nanosheet deposited on NbN by CO at BNL. Pt ML deposition of 4g sample made by NECC.

Small batch	4g batch
2.58 Pt	1.17 Pt
0.25 PGM	0.36 PGM

NbN, similar to WNi, enhances durability. $\Delta E_{1/2}$ shifted -14 mV after 20 K cycles.

Scale up synthesis of Pt_{ML}/Pd_{NS} with WNi or NbN is feasible, but PGM activity needs improvement.

Accomplishment

4. Pt₍₁₁₁₎Co₂P nanorods

Pt mass activity of 0.96 A mg⁻¹ more than double that of PtCo. After 10K 0.6 – 1V cycles, $0.70 \text{ A mg}^{-1} > 0.44 \text{ target}$

Using shape control to maximize favorable core-shell interface

Pt(111)/Co₂P(001) interface has the most favorable O-binding energy for ORR, while $Co_2P(010)$ facet deactivates Pt for ORR.

 Co_2P Nanorods have (001) plane at the sides and (010) at the ends.

The high (001):(010) area ratio of Co_2P nanorods enhances the ORR activity.

Pt(111) formation promoted by $Fe(CO)_5$.

5. Pt-NbO_x-C half-embedded core-shell Accomplishment

Motivation: Prevent carbon corrosion and particle agglomeration during fuel cell's start-ups and shut downs (up to 1.5 V) by using embedded NbOx to minimize Pt-carbon contact and to prevent Pt particle agglomeration.

highly dispersed NbC or NbO particles were obtained.

~5 nm NbO_v embedded particles.

ORR Activity and Durability of Pt-NbO_x-C

Highly sustainable activity: after 50 K cycles, 0.52 A mg⁻¹ above the 0.44 A mg⁻¹ target.

Accomplishment

Pt 14.1 wt% determined by ICP, Nb ~18 wt%. AST: 0.6 -1 V, 50 mV s⁻¹

Very low losses of activity (-4%) and ECSA (-8%) after 30K cycles, much better than the up to -40% targets and that of Pt/C.

4.5-nm-diameter disks are better than 2.6-nm particles for ORR because flat surface is more active and stable than low-coordinated sites at edge.

Accomplishment

Pt-NbO_x-C Durable with 1-1.5 V cycles

Capacitance currents in CV increased slightly for both samples, which is related to carbon corrosion at potential higher than 1 V.

No loss of ORR activity for Pt-NbO_x-C after 5000 cycles 1-1.5V, 0.5 V s⁻¹ because Pt particles were anchored by embedded NbO_x, preventing agglomeration of Pt particles. Loss of activity occurred for the Pt/C where Pt particles were weakly attached on carbon.

MEA tests scheduled for Pt-NbO_x-C as durable anode and cathode catalysts

Summary

	Target	PtNiN	Pt _{ML} Pd _{NS} WNi	Pt _{ML} Pd _{NS} NbN	PtCo ₂ P nanorod	Pt-NbO _x -C
Mass Activity (A mg ⁻¹ PGM)	> 0.44	0.91 RDE 0.37 MEA	0.22 RDE 0.07 MEA	0.36 RDE	0.96 RDE	0.56 RDE
MA loss (30K 0.6-0.95 V)	< 40%	-18% RDE -19% MEA	0% RDE 0% MEA	-20% RDE	-30% RDE	-4% RDE
MA loss (1-1.5V)	< 40%					0% RDE
Loss @0.8 Acm ⁻²	<30 mV	0 mV	4 mV			
Activity rank		excellent	need to imp	orove	excellent	good
Durability rank		excellent	excellent	good	fair	excellent

- > Ni_4N and Co_2P (3d M compounds) are stable, activity-enhancing cores.
- Favorable facets and core-shell interface boost performance.
- Embedding cores into carbon surface prevent particle agglomeration.
- ✓ RDE tests found promising materials and nanostructures.
- Significant progress made in scaling up and MEA test/optimization.

Responses to Previous Year Reviewers' Comments

- C1 Risk of running too many directions, short of a ranking to indicate the most promising direction to achieve goals.
- R1 We did quick screening, focused on fewer catalysts, and provided a comparison table in summary.
- C2 Need to work more on cores with substantially reduced PGM or PGM-free cores.
- R2 We worked on using PGM-free cores and Pd interlayer.
- C3 Need to scale up catalyst synthesis and do more MEA-level tests and physical characterization.
- R3 We increased efforts in scaling up catalyst synthesis and had more MEA tests. These are time consuming.

Collaboration with NECC and GM helped.

Collaboration and Technology Transfer

Partners within Hydrogen and Fuel Cell Program

Los Alamos National Laboratory, Piotr Zelenay (PI), Ulises Martinez, and Yu Seung Kim (L'Innovator), MEA tests, composition by XRF

Collaborators (Universities and institutions)

BNL: Dong Su, Lijun Wu and Yimei Zhu, TEM, STEM University of Virginia: Sen Zhang, Synthesis of Pt-Co₂P nanorods Korean Institute for Energy Research: Gu-Gon Park

Collaborators (Industry)

General Motor: Anu Kongkanand and Yun Cai, MEA tests, EPMA Toyota Motor: Hisao Kato

N.E. Chemcat: Hiroshi Igarashi and Kiyotaka Nagamori, Synthesis, RDE test, and characterization (SEM/EDX)

Technology Transfer (Four BNL Pt(ML) patents licensed)

N.E. Chemcat Co. (2012) Recent RDE of 10kg/batch Pt_{ML}Pd/C

Pt MA A/mg	PGM A/mg	SA mA/cm ²	ECSA m²/g _{Pt}
2.40	1.0	1.53	157

17

Remaining Challenges and Barriers

Challenges remain for low-PGM catalysts

- Pt_{ML}Pd: High PGM activity and durability concurrently
- Facet optimization: Difficult to scale up shape-controlled synthesis
- PtNiN/C and Pt-NbO_x-C:
 - Scale up synthesis with high uniformity and reproducibility MEA fabrication optimization
 - Confirming durability with post-test analysis of MEA
 - Further activity and durability enhancement

Challenges for PGM-free catalysts

Low volume activity H_2O_2 formation Low durability

Proposed Future Work

PtNiN/C

- Octahedral PtNiN to further enhance the activity
- High pressure nitriding to further improve the stability
- Technology transfer to catalyst producers
- MEA optimization and post-test analysis of MEA

Pt-NbO_x-C

- MEA tests and optimization, scale up synthesis
- Including Ni or Co in NbO_x core to enhance activity

Pt-NiN-C

Replacing NbOx with activity-enhancing PGM-free cores

Any proposed future work is subject to change based on funding levels

Proposed Studies of PGM-free Catalysts

PGM-free ORR catalysts via high pressure nitriding

ORR activity of Fe-N-C synthesized in NH_3 at 900°C at 1400 psi (red curve) is higher than that synthesized in NH_3 at ambient pressure (blue curve)

$E_{1/2}$ increased by 761-730 = 31 mV

EXAFS indicates that Fe-N-C comprises Fe-N_4 centers and Fe nanoparticles – a similar structure reported in Mukerjee *et al., JACS* 135 (2013) 15443.

Identify critical factors of the activity enhancement by comparing the atomic structures of high & ambient pressure-nitrided Fe-N-C catalysts:

Density of Fe-N₄ moieties and/or role of Fe NPs?

Oxynitride catalysts for ORR in alkaline media

Li, Kuttilyiel, Fujita, Adzic, Sasaki et al, ChemSusChem 2017, 10, 68

Any proposed future work is subject to change based on funding levels

Technical Back-Up Slides

PtNiN/C – Another MEA test (H₂/air) at LANL)

Higher activity than Pt/C at all currents and with air

Catalyst: BNL PtNiN/C catalyst or commercial ETEK 20wt.% Pt/C Pt loading determined by XRF, close to half of 0.125 mg/cm² Test condition: 80 °C, backpressure 142 kPa Anode catalyst ETEK 20 wt.% Pt/C (0.1 mg_{Pt}/cm²)

1200 1100 Φ8~10 nm 1000 intensity, a.u. 900 VbN(200 800 700 <u>V</u>bN(111 600

500

34

36

38

40

2 theta, degree

NbN XRD peaks observed

Metal nitride nanoframes

Pd(111) nanosheets

42

44

46

NbN synthesis method was used to produce WN, TiN, CrN, VN, and TaN. XRD profiles for Pd_{NS}NbN/C samples made using different Pd precursors and solvents.

TEM and STEM of NbO_x-C

STEM of Pt-NbO_x-C

(d) KB (e) KB 10 nm

(c-e) STEM images made carbon invisible.
(c) <5 nm amorphous NbO_x
(d) Similar size and distribution for Pt-NbO_x-C
(e) Pt lattice are visible on most particles for the samples after Pt deposition

(a, b) TEM images for samples made with Ketjenblack and Vulcan differ distinctly: Dark edge of ~30 nm carbon particles due to heavier Nb embedded in the nanopores on carbon surface (a) versus many irregular >10 nm particles (b).

NbO_x embedded in carbon as evidenced by thermogravimetric analysis (TGA)

The weight loss due to carbon oxidation to gaseous CO_2 occurs at higher temperature for the sample with embedded NbO_x than that by physically mixed NbO₂ and C because embedded NbO_x are less exposed and thus less active in initiating oxidation at low temperatures.

Small weight gain above 600 °C for the sample with embedded, low-oxidation-state NbO_x is due to oxidation of NbO_x to Nb₂O₅.

Low Nb oxidation state and spontaneous Pt deposition

Surface oxidation of NbO occurs at lower potential (peak at 0.98 V) than that of NbO₂ (close to 1.1 V). *L. Zhang, et al. J. Phys. Chem. C, Vol. 114, No. 39, 2010*

Samples made by stirring NbO₂ particles (blue curve) and NbO_xC (red curve) in K₂PtCl₄ aqueous solution overnight exhibited Pt XRD peaks, confirming Pt deposition by not-fully-oxidized Nb.

Our measurements found peak potential at 0.8 V, lower than that for NbO suggesting amorphous NbO_x contains NbC and NbO with **average number of O, x < 1**.