2018 U.S. DOE HYDROGEN and FUEL CELLS PROGRAM and VEHICLE TECHNOLOGIES OFFICE ANNUAL MERIT REVIEW and PEER EVALUATION MEETING, June 13-15, 2018

Project ID: FC146

Advanced Materials for Fully-Integrated MEAs in AEMFCs

PI: Yu Seung Kim

Los Alamos National Laboratory

June 15, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

1

Overview

Timeline

- Project start date: 11/2/2015
- Project end date: 11/2/2018
- Percent complete: 85%

Budget

- Total project funding: \$3,060K
 DOE share: 98%
 - Contractor share: 2%
- Funding received in \$980K
 FY18:
- Total DOE Funds Spent*: \$2,390K
 *As of 4/17/2018

Barriers

- B. Cost
- C. Electrode performance
- A. Durability

 Los Alamos National Laboratory Yu Seung Kim (PI), Sandip Maurya, Eun Joo Park, Dongguo Li, Ivana Matanovic

Partners

 Sandia National Laboratories Cy Fujimoto (Co-PI), Michael Hibbs
 San National Laboratories San National Laboratories

- Rensselaer Polytechnic Institute Chulsung Bae (Co-PI), Sangtak Noh, Jongyeob Jeon, Junyoung Han
 Rensselaer
- Argonne National Laboratory Vojislav Stamenkovic, Rongyue Wang

Relevance

Objective

 Development of improved AEMs, ionomeric binders and integration of catalysts and AEMs into high-performance MEAs.

Technical Target

	Units	LANL Baseline (2015)	DOE Target ¹ (4Q, 2017)	Current Status (1Q, 2018)
ASR	Ω/cm^2	0.2	≤ 0.1	0.05 ²
AEMFC Performance	mA/cm ² at 0.6 V	420 (382 kPa) ¹	600 (≤ 152 kPa) atm)	950 (78 kPa)²
AEM Durability	ASR after 500 h run at 600 mA/cm ²	0.8 after 300 h run at 0.3 V	< 0.1	0.05 ³
AEMFC Durability	% V loss after 2000 h at 0.6 A/cm ² at ≥ 60°C	60% after 300 h run at 0.3 V at 60°C ³	< 10% (2Q, 2019)	12.5% V loss at 0.6 A/cm ² after 500 h at 80°C ³

¹From FCTO MYRDD Plan; ²Technical Back-up Slide #1; ³Slide 7

Approach

Research Focus	Major Founding	Breakthrough
<i>AEM</i> Stability (2016)	Polymer backbone degradation via aryl-ether cleavage ¹	Aryl-ether free polyaromatics: Demonstrated > 2000 h stability in 4 M NaOH 80 ℃
<i>AEMFC</i> Performance (2017)	Phenyl group adsorption ²	Poly(fluorene) ionomers: Demonstrated 1.5 W/cm ² peak power density
<i>AEMFC</i> Durability (2018)	In progress	Not yet

¹Fujimoto et al. J. Memb. Sci. 423-424, 438-449, 2012; ²Matanovic et al. J. Phy. Chem. Let. 8, 4918-4924, 2016

Milestone & go-no-go decision

Date	Milestone & Go-No-Go	Status [#] (%)	Result	Comments
Mar. 2016	Down-select AEM	100 (Feb. 2016)	Poly(phenylene)	Poly(terphenylene) (RPI) & Diels Alder poly(phenylene) (SNL)
Dec. 2016	Down-select ionomer	100 (June 2017)	Poly(fluorene)	6 month delayed due to incomplete HOR study
Mar. 2017	In-situ AEM ASR $\leq 0.1 \Omega$ cm ² for 500 h at 600 mA/cm ² (Go-No Go)	100 (Mar 2018)	0.05 Ω cm ²	Completed <i>ex-situ</i> test on Dec. 2016; postponed <i>in-situ</i> test due to delay of the down-selection of ionomer and HOR catalyst
Jun. 2017	Assess perfluorinated ionomer property	100 (Mar. 2017)	Stable for 120 h at 0.5 M NaOH, 80°C	Stop further development by reviewers' suggestion
SEP. 2017	Integrate MEAs; Peak power density > 0.6 W/cm ²	100 (Apr. 2017)	1 W/cm ²	Best AEMFC performance using polyaromatic ionomer by the time
Dec. 2017	Down-select HOR catalyst	100 (Oct. 2017)	PtRu/C	Least phenyl group adsorbing catalyst
Mar. 2018	Integrate MEAs; Peak power density: 1 W/cm ²	100 (Dec. 2018)	1.5 W/ cm ²	Best AEMFC performance using polyaromatic ionomer by the time
July. 2018	< 10% V loss for 2000 h	25	12.5% for 500 h	Completed 500 h test (3/2018)
Sep. 2018	Deliver 50 cm ² MEAs	10		

Red: delayed; Blue: exceed milestone criteria

Ex-situ alkaline stability of the down-selected AEM

AEM stability test: Immerse AEMs in 0.5 M or 4 M NaOH at 80°C. Conductivity measured at 30°C/95% RH during the stability test.

- Completed 11,000 h AEM stability test
- Highlight: No conductivity & structural changes for the down-selected AEM after 4 M NaOH treatment at 80°C for 2,200 h. → Known most-alkaline stable AEM

More info for PP-HTMA: see Technical Back-up Slide #2

In-situ alkaline stability of the down-selected AEM

AEM: Down-selected poly(terphenylene) (TPN) (thickness: 40 μ m), **Ionomer:** poly(fluorene) (FLN), **Catalyst:** Pt-Ru/C 0.5 mg_{Pt}/cm² (anode), Pt/C 0.6 mg_{Pt}/cm² (cathode).

Life test: Operating AEMFC under H₂/O₂ conditions, 146 kPa backpressure at constant current density (0.6 A/cm²)

• Highlight: No HFR change during 550 h life test; The ASR = ~0.05 Ω cm² met Go-No-Go decision criteria (*In-situ* AEM ASR \leq 0.1 Ω cm² for 500 h at 0.6 mA/cm²)

More info for TPN: see Technical Back-up Slide #2

Performance verification of the down-selected AEM

AEM: Down-selected PP-HTMA, Ionomer and catalysts: Pocelltech standard; measured under H₂/CO₂-free air

- Pocelltech verified AEM ASR. HFR value of the cell (0.073 Ω cm²) is in good agreement with LANL data.

Identify AEMFC performance limiting factor

• **Phenyl group adsorption** is the AEMFC performance limiting factor

DFT adsorption energy of phenyl group: see Technical Back-up Slide #3

HOR ionomer development and down-selection

Significant biphenyl adsorption

on Pt-Ru ($E_{ads} = 0.98 \text{ eV}$) due to

phenyl ring rotation while the

adsorption of phenyl group in

More info: Back-up slide #3

fluorene is minimal.

-0.98 eV

Detailed synthetic procedure: see Back-up Slide #4

Alkaline stability (1M NaOH, 80°C)

Highlight: Poly(fluorene) ionomer was down selected based on DFT result (E_{ads} = 0.98 eV).

Fluorene

on Pt-Ru

adsorption

10

AEMFC performance using project down-selected materials

AEM: TPN (thickness: 35 μ m), **Ionomer:** FLN, **Catalyst:** Pt-Ru/C 0.5 mg_{Pt}/cm² (anode), Pt/C 0.6 mg_{Pt}/cm² (cathode). Measured under H₂/O₂ condition

Down-selected AEM Poly(terphenylene) (TPN)

Down-selected ionomer Poly(fluorene) (FLN)

 Highlight: Achieved 1.5 W/cm² peak power density with down-selected AEM and ionomer (exceed milestone criteria and best-known performance using polyaromatic AEM and ionomer).

For H_2 /air data and low backpressure performance, see Technical back-up slide #1

Low Pt-loading anode catalyst

HOR voltammogram of Pt/C (ANL) and Pt-Ru/C (TKK) in 0.1 M TMAOH and BTMAOH

- The Pt-Ru/C HOR catalyst (ANL) exhibited much higher HOR activity due to less-phenyl group adsorption.
- Highlight: Achieved 800 mW/cm² peak power density with 0.025 mg_{Pt}/cm².

AEM: TPN (thickness: 35 μ m), **Ionomer**: FLN, **Catalyst**: Pt₁-Ru₈/C 0.1 mg_{metal}/cm² or Pt/C 0.1 mg_{Pt}(anode), Pt/C 0.6 mg_{Pt}/cm² (cathode). Measured under H₂/O₂ condition

Pd-based (Non-Pt) anode catalysts*

AEM: TPN (thickness: 35 μ m), **Ionomer:** FLN or PP-HTMA, **Catalyst:** Pd/C, Pd/C-CeO₂, or Pt/C 0.6 mg_{metal}/cm² (anode), Pt/C 0.6 mg_{Pt}/cm² (cathode). Measured at H₂/O₂.

Ionomers for the study

- Ionomer impacts the AEMFC performance of Pd-anode catalyzed MEAs
- Maximum power density of 950 mW/cm² obtained with Pd/C anode catalyzed AEMFC (~ 75% of the peak power density of Pt catalyzed AEMFC)

* Detailed information for Pd-based catalyst: see ref. Miller et al. Angewandte Chemie, 2016, 128, 6108-6111

Responses to previous year reviewers' comments

 The project needs to begin considering non-Pt catalysts and the effect of air at some point.

We started the non-Pt (non-Pt) catalysts from this year with down-selected materials. We have tested non-PGM HOR and ORR catalysts (shown in Back-up Slide #5). The data is preliminary and we are looking for performance improvement. We started to examine H_2 /air performance and report H_2 /air performance (Back-up Slide #1).

 A number of collaborators are listed, but it is not clear that materials have been exchanged with these partners.

Material transport is essential. Materials developed from this projects have been provided a number of collaborators. We included some important material test data in this presentation.

Better collaboration should be done with other laboratories working on these AEM materials.

Some materials developed from this project have sent to NREL and LBNL in addition to our former collaborative national labs (Argonne and Sandia).

Collaboration and Partners

Small samples were also provided to NREL, University of Arizona and other research institutes

Remaining challenges and barriers

Within the project (ending November 2, 2018)

 Durability issue is probably the most urgent remaining challenge and technical barrier for AEMFC technology. LANL team is trying to find the durability limiting factor of AEMFC rest of the project period. Probably continue beyond this project period. Below figure shows some progress.

After the project

- Robust thin membrane production (RPI, Xergy, TIT)
 - PTFE reinforcement
 - Pore-filling membrane
- Integration of non-PGM or low PGM catalysts (LANL, ANL, SUNY Buffalo, WSU, UNM)
 - HOR catalyst
 - ORR catalyst

Short-term AEMFC test

Proposed future work

Remainder of FY 2018 (7 month)

AEM and ionomer synthesis (SNL, RPI, LANL)

Large scale (> 10 g) down-selected AEM and ionomer synthesis

AEMFC performance (LANL, ANL)

- Complete performance assessment of MEAs employing non-PGM ORR catalysts
- Complete performance assessment of MEAs employing reinforced or ultrathin membranes
- Complete performance assessment of MEAs employing non-PGM HOR catalysts

AEMFC durability (LANL)

- Identify durability limiting factor
- Complete > 500 h life test at a constant current density of 0.6 A/cm² & post mortem analysis

Technology transfer activities

- **RPI:** established a joint venture to produce large scale production of AEM and ionomers.
- **SNL:** CRADA with an industrial partner.
- **LANL:** Participated in a SBIR program to license AEM technology.
- FY 2018 patent and patent applications
- SNL & LANL: "Poly(phenylene alkylene)-based ionomers" US 9,534,097 (2017).
- LANL: "Polymer electrolytes for alkaline membrane fuel cells" S133606 (March, 2, 2018)

Summary

- **Objective:** Development of improved AEMs, ionomeric binders and integration of catalysts and membranes into high-performance MEAs.
- **Relevance:** Aiming to make AEMFC system competitive to PEMFCs in terms of performance and durability. Identifying performance barrier and degradation mechanism of AEMFCs.
- Approach:Preparing AEMs without aryl-ether free polyaromatics (Year 1).Developing high-performing ionomers through catalyst-ionomerinterfacial study (Year 2). Demonstrating AEMFC durability of fully-integrated MEAs from materials developed from this project (Year 3).
- Accomplishments (FY 17) Completed to prepared AEMs with exceptional stability with desired film forming properties. Demonstrated stable ASR ~ 0.05 Ω cm² for 500 h MEA operation at 0.6 A/cm². Designed new fluorene ionomer that exhibited 1.5 W/cm² (H₂/O₂) and 680 mW/cm² (H₂/CO₂-free air) peak power density of AEMFC performance. Implemented non-Pt and low-Pt HOR catalysts in MEAs, which exhibiting promising performance.
- **Collaborations:** Multiple collaborations with academia, industry and other national labs. In most cases, our team has provided alkaline membranes to the collaborators or has obtained potential catalyst materials for MEA testing. Tech transfer efforts have been made with several small business.

Technical Back-Up Slides

AEMFC performance using the project down-selected materials

AEM: TPN (thickness: 35 μ m), **Ionomer:** FLN, **Catalyst:** Pt-Ru/C 0.5 mg_{Pt}/cm² (anode), Pt/C 0.6 mg_{Pt}/cm² (cathode). Measured under H₂/O₂; 78kPa abs backpressure (ambient condition at Los Alamos altitude (7000 ft)

H₂/air AEMFC reaches 0.68 W/cm² peak power

AEM: TPN (thickness: 35 μ m), **Ionomer:** FLN, **Catalyst:** Pt-Ru/C 0.5 mg_{Pt}/cm² (anode), Pt/C 0.6 mg_{Pt}/cm² (cathode). Measured under H₂/CO₂-free air ; 285kPa backpressure

Synthesis of down-selected AEMs (aryl-ether free polyphenylene)s

Maurya et al. Chem. Mater. 2018, 30, 2188.

Ref. Lee at al. ACS Macro Let. 2017, 6, 566-570.

Down-selection was based on hydroxide conductivity and alkaline stability. ۲

Adsorption energy of phenyl group on Pt and Pt-Ru surface

• Fluroene-Pt/Ru interface has the least interaction which can minimize the interaction with HOR catalysts.

Down-selected Ionomer poly(fluorene)s (FLN)

Synthetic Procedure of FLN

¹H NMR spectra of FLN (DMSO-d₆)

• Down-selection was based on alkaline stability and minimum interaction with catalysts

tical 2.5

2.5

2.5

180

110

120

Preliminary Non-PGM catalyst works

NiMo/C HOR catalyst (UNM) N-doped C ORR catalyst (WSU) AEM: Tokuyama A201, Ionomer: QASOH, Catalyst: AEM: TPN, Ionomer: FLN, Catalyst: Pt-Ru/C 0.5 mg/cm-2 NiMo/C 4 mg/cm² (anode), Pd/C 0.2 mg_{Pt}/cm² (cathode). (anode), N-doped C 0.6 mg_{bt}/cm² (cathode). Measured Measured under H_2/O_2 ; 50kPa (gauge) backpressure under H_2/O_2 ; various backpressure 1.10-0.20 1.0 NiMo/KB LANL ionomer 1.05 0.8 ^oower density. W/cm 0.15 >1.00 Cell voltage, Voltage, V 0.6 0.10 0.95 0.4 0.90 0.05 0 Psi 0.2 10 Psi 0.85-30 Psi 37 mA cm⁻² @ 0.87V +0.00 0.0 35 20 25 30 10 15 0.2 0.4 0.0 0.6 Current density, mA cm⁻² Current density, A/cm²

- NiMo/C anode catalyzed MEA exhibited impressive kinetic performance (0.37 mA/cm² at 0.87 V; but anode was flooded at high current density.
- N-doped C catalyzed MEA exhibited relatively poor performance. Further investigation is on going.

