Novel ionomers and electrode structures for improved PEMFC electrode performance at low PGM loadings

DoE Annual Merit Review

Washington, DC, June 14, 2018

Project ID # FC155: PI: Andrew Haug, 3M

<u>Team:</u>

3M M. Lindell, F. Sun, J. Abulu, M. Yandrasits, A. Steinbach, M. Kurkowski, G. Weatherman, G. Thoma, I. Khan, M. Guerra, S. Smith, G. Dahlke, M. Priolo

Tufts University

Iryna V. Zenyuk, D. Sabarirajan, S.Normile, J. Liu, Y. Qi Michigan Technical University

J. Allen, K. Tajiri, E. Medici, S. Abbou

FCPAD LBNL (A. Weber, A. Kusoglu), NREL (KC Neyerlin), ORNL (D. Cullen), LANL (R. Borup), ANL (D. Myers)

BUDGET & Status

 Timeline Project start date: Project end date: 21.5 of 36 months complete @ 	10/1/16 9/30/19 ⊉ AMR	Budget• Total Project Budget:\$3,245,349• Total Recipient Share:\$649,071• Total Federal Share:\$2,596,278• Total Project Costs:*\$1,225,000• Current Recipient Share:\$245,000• Current DOE Share:\$980,000* As of 3/31/18** Sub expenses as of 2/28/18
 Barriers addressed Cost, durability, performance Operational robustness 		 Partners SUBCONTRACTORS Michigan Technological University Tufts University FCPAD: LBNL, ORNL, NREL, LANL, ANL PROJECT LEAD: 3M

Key Barrier Cathode Transport limitations

Dispersed Cathodes at SEF's below 100 cm²_{PGM}/cm²_{planar},

Transport losses become significant

Traditional NSTF cathodes break this trend

• SEF's as low as 10.

Likely that oxygen transport through ionomer near the reaction site is a key limitation

FC155 goal is to

- Understand and improve
 Ionomer, bulk & local electrode transport
- Integrate NSTF into a dispersed electrode
- Maintain NSTF activity and durability
- Achieve high performance and robustness

A. Weber, J. Mater. Chem. A, 2014, 2, 17207-17211

Approach

Improved lonomer

2 methods to improve transport

Improve electrode **ionomer O₂ permeability**

<u>3M Perfluoroimides (IMIDE 1,2,etc)</u>

Increase O₂ perm,

May reduce catalyst poisoning

 $\overset{O}{\mathsf{C}_{4}}\mathsf{F}_{8} - \underbrace{ \overset{H}{\mathsf{SO}_{2}}\mathsf{NSO}_{2}}_{\mathsf{X}} - \overset{C}{\mathsf{C}_{3}}\mathsf{F}_{6} - \underbrace{ \overset{SO_{3}}{\mathsf{SO}_{3}}\mathsf{H}}_{\mathsf{X}}$

M. Yandrasits. DoE AMR (2015).

 \sim

 \dot{O} H $C_4F_8-SO_2NSO_2-$ Rf

<650EW

Dispersed NSTF

Incorporate NSTF into powdered electrode

- 10-100X thicker than NSTF
- Contains ionomer
- Improved operational robustness
- Not constrained to planar NSTF loadings

Relevance

Relevance, Objectives & Status

METRIC		20201	FC155	3/2017	3/2018
		Target	Target		
PGM total loading, mg/cm ²		0.125	0.125	0.102 ²	0.102 ²
PGM total loading, g / kW [150 kPa abs]	NSTF Ionomer	0.125	0.125	0.1722	0.172 ² 0.125 ^{2,4}
Mass activity @ 900 mV iR-free, A/mg		0.44	0.44+	0.28+	
SUSD AST, %ECSA loss		<20 %	<20	N/A	N/A
SUSD AST, mV loss @ 1.2 A/cm ²		< 5%	< 5%	N/A	N/A
Support AST, % mass activity loss	NSTF	< 30	< 30	28% (Pt)	<10% (Pt)
Electrocatalyst AST, mV loss @ 1.5 A/cm ²	NSTF Ionomer	< 30	< 30	<u>NA</u>	$\frac{80^5}{134^5}$
Electrocatalyst AST, % Mass activity loss	NSTF Ionomer	< 40	< 40	$\frac{45\% (\text{Pt})}{83\% (\text{Pt})}$	<u>40% (Pt)</u> 54.5%
MEA Robustness (cold/ hot / cold transient)	NSTF Ionomer	0.7/0.7/0.7	>0.7/>0.7/>0.7	0.83/0.79/>1.0	0.93/0.84/0.90 0.97/0.90/0.94
Ionomer Conductivity (S/cm, 80C, 50%RH)			0.087	0.050	0.070
Ionomer Bulk O ₂ perm (mol-cm-s ⁻¹ -cm ⁻² -kPa ⁻¹), 80C, 50RH			1.8E-13	2.0E-13	2.3E-13
All metrics and DOE 2020 targets are taken from DE-FOA-00014124 At 0.65V, 80/68/68C. 7.5 psig0.025 mgPt/cm² anode5 At 70/70/70C, 0 psig3M transient protocols used for NSTF testing5 At 70/70/70C, 0 psig					

OJBECTIVE

- Novel, <u>electrode-focused ionomers</u> will be generated, focusing on combining conductivity with improved O₂ transport
- <u>Understand and Optimize</u> cathodes utilizing <u>NSTF catalyst powder</u>
- Integrate ionomers with NSTF powder electrocatalyst to develop an advanced cathode of high activity and durability
- Guide development with state of the art and novel characterization & modeling techniques

Collaboration & Coordination

Collaboration & Coordination

Collaborative results shown in upcoming slides

Progress and Objectives

				•
		Milestone Summary Table	Q/M	%
В	P1	Go/NoGo: NSTF electrode ECSA >= 15 m²/g, 40 cm²/ cm² , 0.7 robustness. Ionomer bulk O2 perm + conductivity > 3M825 baseline		100
	1,2	Synthesize IMIDE#1, Make 20+ grams of NSTF 25 ugPt/cm2 powder.	1/3	100
SK	1,2,4	Validate DoE AST tests, specialty tests, run baseline with 3 ICs, 3 loadings	2/6	100
IA	1, 2	Characterize ionomer, Pt/C, and powder NSTF (SEM, TEM, NanoCT, etc)	3/9	100
	1,2,4	NSTF powder electrode >= 0.30 A/mg Pt, NanoCT disp NSTF,	4/12	100
В	P2	Go/NoGo : Ionomer exceeds 3M825 O ₂ perm by 33% with similar or improved conductivity. 0.35 A/mg Pt, 0.175 g/kW power output		75
	4	Reaction-kinetics model added to PNM framework. PNM predicts pol curves at T = $40 ^{\circ}$ C and $80 ^{\circ}$ C.	5/15	100
SK	2	NSTF Cathode ECSA >= $25 \text{ m}^2/\text{g}$.	6/18	100
TA	4	MTU/Tufts: Baseline structures, electrochem input to PNM, delivering initial predictions.	7/21	80
	2	NSTF activity >=0.35 A/mg Pt in an electrode. 0.2 g/kW with NSTF containing electrode.	8/24	70
В	P3	END: See Targets slide		60
	4	MTU/Tufts: PNM - continuum predicts pol curves for T = 40 and T = 80C within 10%	9/27	33
SK	1-3	Support AST targets achieved. Metal cycle AST <40% activity loss.	10/30	100
LA	1	lonomer with 50% greater O_2 permeability and 50% greater H+ conductivity than 3M825	11/33	75
	1-3	>=0.44 A/mg PGM in electrode. Metal AST <=30% activity loss. 0.125 g/kW.	12/36	40

TASK1: Novel Ionomer Development Ex-Situ

Bulk O₂ perm characterization

• GM (Zhang ECS 2013) method

Imide 2,4 (vs 825): **+37-50%** at 80C, 100% RH Imide 4 (vs 825): **+92%** at 80C, 50% RH MASC ionomers show high conductivity <u>IMIDE</u>#4: 22% more conductive vs 3M825 NEW IONOMERS can exceed baseline conductivity

 IMIDE #4: +92% O₂ perm., +22% conductivity vs. 825EW (80С,50%RH) BP1 GNG achieved. BP2 GNG achieved
 NEW Ionomer structures made with good conductivity

TASK1: Ionomer Evaluation THIN FILM

- GISAXS (LBNL): MASCs, IMIDEs less oriented than PFSA's as a thin film (lower orientation parameter)
- Ionomer domain spacing
 - MASCs > IMIDEs > PFSA
- Thin film swelling:
 - Consistent with EW
- Goal:
 - Link ionomer properties to electrode performance
 - Incorporate into the PNM

TASK1: **Ionomer Evaluation**

2e⁻

H₂

Vanode

ELECTRODE

Tufts evaluating ionomer conductivity in electrodes

 MASC1 8X conductivity at 80%RH in electrode

MTU: decreasing contact angle with EW

- Defining electrode window of operation ٠
- New ionomers may break PFSA curve •

TASK1: Ionomer Evaluation CCM/MEA

- MASC allows
 - low I/C
 - lower local transport losses
- MASC improves high current operation
 - [BACKUP] MASC robustness good at low I/C
- IMIDEs show increased H₂/Air activity

FUTURE: Combine benefits

Task 1: BEST in CLASS

- SPECS:
 - 0.025 mg Pt/cm² anode
 - Better membrane, GDL
- Latest crosses 0.125 g/kW @ 0.647V
 - Imide#1, I/C=0.9, above AN/MEM/GDL
- Wide operating range
- FUTURE GAINS:
 - IMIDE#4, Better catalyst,
 - New lonomers

TASK1: Ionomer

Future Work / Key Challenges Future Work

- IMIDES & MASCs & PFSAs
 - New imides will likely be made after
 IMIDE #4
 - Path possible to greater O₂ perm
 - Go lower I/C for performance & durability
- NEW IONOMER PATH [Backup slide]
 - Incorporate new O₂ permeable monomers
 - Several prepared, tested, in queue
 - Additional materials every 2-3 months

- Key challenges
 - Gain 50+50 (O₂ perm + conductivity) ionomer
- Linking:
 - bulk/measurable properties
 - To ionomer characteristics
 - To improved fuel cell performance
- Optimizing for dispersed NSTF system

TASK2: Powdered NSTF

Electrode Properties

- TRANSPORT TESTING
- NANO-CT Evaluation
- Bringing understanding to disp.
 NSTF parts

Sample	Wh/S	Porosity	In Plane Tortuosity	Thru Plane Tortuosity
Sppt#2	HIGH	0.59	1.96	1.58
Sppt#2	VERY LOW	0.59	2.03	1.74
C	HIGH	0.51	2.63	2.24
Sppt#1	VERY LOW	0.52	2.42	2.29

TASK2: Powdered NSTF 10Pt/10α ug/cm²

New NSTF Catalyst from FC144 (Steinbach PI)

- ECSA is 59 m²/g Pt, 30 m²/g PGM
- 0.135 mg Pt/cm² electrode made
 - H_2/O_2 Mass & spec. activity lower than expected
- H₂/Air low current:
 - 25mV gain vs best Pt @ 0.8V with 40% less Pt
- H₂/Air low HIGH current performance is poor
 - Root causing

Catalyst	Activity Disp. NSTF	%Retained vs. Classic NSTF
Pt	0.09	66-70%
PtCoMn	0.2-0.25	64-75%
Pt/α	0.10	~30%

TASK2: Metal AST

- NSTF decay rates scale with loading on whiskers
 - Similar to standard (non-dispersed) NSTF
- <u>10Pt/10α shows exceptional stability</u>,
 - 15% ECSA loss

METAL AST Testing

Thinner NSTF coatings
 lose whisker shape after AST

IMPLICATIONS

- Disconnected metal coating disintegrates
- Lost NSTF area/activity

MITIGATIONS Available

- 10/10 Pt/ α is an example
- Thin film structure maintained

TASK2: Metal & Support AST

- NSTF samples exceed Support AST targets
 - Supports #2, 5
- Metal AST performance decay minimal with sufficient surface roughness
- 10Pt/10a shows exceptional stability
 - Meets metal AST targets
 - & Sppt AST targets w/Sppt #4,5
 - AST Performance loss greater than expected
 - Root causing / reoptimizing

TASK 2: Best in Class performance

- NSTF 25Pt incorporating Task 1 ionomer knowledge
- Pt/alpha and PtXY catalysts offer ECSA and 30+ mV
- Ionomer, structure learnings to be incorporated in BP2, 3

vs. 80C, 68C	30C	90C,	35-80C
Dpt		68C Dpt	trans
TARGET	0.7	0.7	0.7
Oct. 2017	0.83	0.79	>1.0
Mar. 2018	0.93	0.84	0.90

Task 3: Transition Metal Issue

- Ni and Co leach into electrode pre-test
 - PtNi Cathode ionomer is completely neutralized
- MITIGATION & Understanding Necessary
 - Increase electrode ionomer & IEC
 - · Acid wash catalyst to remove excess Ni
 - TMI operating window (NREL local transport)
- Status: 1st Acid Treatments caused activity loss
 - Significant work ongoing

Catalyst	State	% Transition Metal Retained
	Powder	100 (Co)
PtCoMn	CCM/Untested	33
	Tested	20
	Powder	100 (Ni)
PtNi	CCM/Untested	72.5
	Tested	64

Future Work / Key Challenges

TASK 2,3: NSTF & Integration Next

- NSTF Alloy integration critical
 - PtNiRu lost more than 33%
 - Identify&expand TMI operating window
 - TMI impacts (Ex: Local O₂ transport)
 - Process development
- Test method requiring less NSTF
 - 10Pt/10 α required 25+ feet of NSTF film
- Process development
 - TMI removal with minimal activity loss
- Integration with new ionomers
- Integration with downselected support

	Test date	Balanc e	lonomer
PtNi	End Q2	Sppt 1	3M825
PtNilr	End Q4	Sppt 2	3M825
PtNiRu	End Q5	Sppt 3	3M725
PtNiRu rpt	Q6-Q8	Process development	
New NSTF	Q7-Q9	Sppt 2 or 5	TBD

Tufts-MTU Electrode Transport Model

Reviewer comments:

AMR 2017

- The specifics for next steps have not been presented in a clear, concise manner, nor are the key variables or learnings from the next steps presented in a way to lend confidence in obtaining positive results.
- A clearer experimental plan and next steps are needed.
 - It is hoped 3M achieved this in the annual review and in the 2018 AMR presentation
- It is not suitable to work only on materials development to meet the target. Investigating why it works (or does not work) is expected.
 - It is hoped the FC155 team has shown some background on NSTF and ionomer improvements
- The work on NSTF does not seem to have particularly high cell performance and seems to be significantly lower than the standard NSTF membrane electrode assemblies (MEAs)...the highest-performing NSTF samples would be of greater interest, as those studied to date do not appear to be the highest performers.
 - We have shown improved operation for Pt NSTF, but alloy integration requires effort that is budgeted for in Task 3.
- Annual review (paraphrasing): Clearer demonstration of meeting DoE operation range parameters should be shown for dispersed NSTF.
 - 3M has corrected this and demonstrated NSTF operating range more clearly in this presentation.

Summary

- TASK 1
 - Ionomers developed exceeding BP1,2 O₂ permeability and conductivity targets
 - Ionomer thin film, bulk & electrode understanding focusing future work
 - Best in class ionomer showing promising performance
 - Lower ionomer content parts increasing metal stability
- TASK 2
 - Exceptional metal AST shown with 10Pt/10 α NSTF electrodes
 - DoE support AST targets exceeded utilizing NSTF
 - Improved dispersed NSTF performance shown & path for improvement demonstrated
 - Dispersed NSTF fundamental understanding building
- TASK 3
 - Dispersed NSTF alloy incorporation work ongoing
- TASK 4: PNM model development in validation phase, predictions beginning

BACKUP

Acknowledgements

- 3M
 - M. Lindell
 - F. Sun
 - J. Abulu
 - M. Yandrasits
 - A. Steinbach, M. Kurkowski
 - G. Weatherman
 - G. Thoma
 - I. Khan
 - M. Guerra
 - S. Smith
 - G. Dahlke
 - M. Priolo
- Tufts University
 - I. V. Zenyuk
 - D. Sabarirajan
 - S. Normile
 - J. Liu
 - Y. Qi

- Michigan Technical University
 - J. Allen
 - K. Tajiri
 - E. Medici
 - S. Abbou
- FCPAD
 - LBNL (A. Weber, A. Kusoglu)
 - NREL (KC Neyerlin, S. Kabir)
 - ORNL (D. Cullen, K. More)
 - LANL (M. Mukundun, R. Borup)
 - ANL (D. Myers)

Process development

- Two critical factors limit NSTF effectiveness
 - Operating range
 - Conditioning

NSTF:

- Work on this project has led
 - to increased conditioning rates
 - And increased operating range

TASK1: Path to New Ionomers

TASK 2: In cell tests

Operando TXM nano-CT Cell

- Operando cell design for X-ray tomography is completed and the cell tested at three synchrotrons: APS, SSRL and ESRF
- Active area ~ 4 mm², the cell maintained constant 10 mA current
- Current challenges: beam damage at low energies

School of

Engineering