High performance PEFC electrode structures

This presentation does not contain any proprietary, confidential, or otherwise restricted information. Approved for Public Release

Overview

<u>Timeline</u>

Project Start:	October 2016
Actual Start:	Jan 2017
Project Duration:	45 months (with
	no-cost extensions)
BP-1 End Date:	June 30, 2018

<u>Budget</u>

Total Project Budget:	\$3,019K
 Federal Share 	\$2,415K
 Cost Share (20%) 	\$604K
Total Funds Spent*:	\$748K
Total Funds for BP-1:	\$972K
* as of 3/31/2018	

Key Barriers

Achieve DOE's 2020 Targets for MEAs

Characteristic	Units	2015 Status	2020 Targets
Platinum-group metal (PGM) total loading (both electrodes)	mg PGM /cm ²	0.13	≤ 0.125
Performance @ 0.8 V	mA/cm ²	240	300
Performance @ rated power (150 kPa _{abs})	mW/cm ²	810	1,000

UNIVERSITY OF ARKANSAS

<u>Relevance</u>

Objective: Develop *improved fundamental understanding of transport limitations* in a SOA MEA and use this know-how to *develop and demonstrate high-performance MEAs with ULCLs*

- High-activity ORR catalysts have been developed & demonstrated
 - MEAs with ultra-low catalyst loadings
 (ULCLs) can meet activity targets
 - Transport losses are major barrier
 - Flux rate per catalyst site is increased
 - Transport losses increase
 - MEAs with ULCLs cannot yet meet power density (high current) targets

- Need to reduce transport losses in MEAs with ULCLs
 - *First step is to determine actual root-cause mechanisms* (*e.g.,* not CCL thickness)
 - Fundamental understanding lacking (previous models did not agree w/ data)

Improved understanding of transport losses in PEMFCs with ULCLs is needed

Technical Approach

Develop Detailed Geometric (*i.e.*, microstructure) Model of CCL

Cathode catalyst layer (CCL) contains multiple length scales

- 1) Develop realistic microstructure model to help discern key mass-transport limitations in MEAs with ULCLs
- 2) Valid microstructure CCL model with experimental data
- 3) Use validated CCL model to determine how to potentially mitigate transport losses
- 4) Develop & demonstrate MEAs with ULCLs with reduced transport losses

Multiple possible transport-limiting mechanisms within CCL

Iterative process enables both improved understanding & cell performance

Accomplishments & Progress

- Four major Quarterly Milestones have been successfully completed since the 2017 AMR meeting
 - Project is currently on-schedule (revised from original)
 - Subsequent slides show key results for the last 3 milestones
- Go/No-Go Milestone was validation of UTRC's new CCL Model
 - Model agrees well with in-cell performance data, using CCL geometric parameters measured by a variety of methods
 - This has been successfully completed using both the team's data AND with others' data

Milestone	Tasks	Task Title	Milestone Description and Status
I.D.			
2 3, 4	2 /	Carbon-supported	Team has demonstrated SOA performance Pt-only catalyst (Pt
	MEA Fabrication	loading $\approx 0.1 \text{ mg/cm}^2$) with Ion Power MEA.	
2	2	Model development	UTRC's microstructural electrode model provided to LBNL
3 Z	and validation	and this model has been implemented in FC-PAD's PEFC model.	
4	2	Model development	UTRC's microstructural electrode model has been validated with
Go/No-Go	2	and validation	SOA MEA data, both with Ion Power MEAs and with others' data.
5 6	6	6 Novel catalyst MEA Fab	Successfully fabricated a MEA (w/ 12.5-cm ² cell active area) using
	0		thin-film catalyst deposited by UALR on GDL and tested by UTRC.

UTRC has developed new Hierarchical Model of the CCL

UTRC's cathode-catalyst layer (CCL) Model is differentiated from previous models by:

- Explicit treatment of diffusion at two different length scales
 - 1) Agglomerates, and
 - 2) Platinum nano-particles

UTRC model accounts for extremely large fluxes to limited catalyst surface area in CCLs with ultra-low Pt loading

- Model treats agglomerates with Thiele moduluseffectiveness factor approach
 - Thiele modulus, $\varphi,$ is ratio of kinetic and diffusion rates
 - With ultra-low loadings, diffusion dominates and φ is large
 - At φ = 30, 90% of agglomerate is inactive and reaction is confined to a narrow surface region of the agglomerate
- Significant transport losses occur at length scales of the catalyst particles
 - Use Modified Thiele modulus and effectiveness factor
 - Also modify the "reaction" rate constant to include slow adsorption and local diffusion at scale of Pt particles
 - Relationship between effectiveness factor, η, and φ remains the same because overall process is 1st order in oxygen

$$j_{Pt} = \frac{i_{Pt}}{n_e F} = \frac{c_{\infty}}{\frac{1}{k_r} + \frac{d_{Pt}}{D} + \frac{1}{k_{ads}}} = \frac{k_r c_{\infty}}{1 + \frac{k_r d_{Pt}}{D} + \frac{k_r}{k_{ads}}} = k_* c_{\infty}$$

Including transport losses at Pt-particle length scales results in $i_{lim} \alpha$ Pt loadings

UTRC's CCL model has been validated using literature data

- Model validated using:
 - Experimentally measured agglomerate & platinum sizes
 - CCL Transport Resistances reported by GM and TMC

- 300-nm curve is close to the result for *E-type carbon* from TMC
- 150-nm curve is close to the result for Vulcan carbon from GM & Nissan
- 50-nm curve is close to the result with only local losses

Data sources:

Nissan: Ono, Y., et al. 2010, ECS. Trans. 28(27), p. 69 TMC: Nonoyama, N, et al., 2011, JECS 158, p. B416 GM: Owejan, J. P., et al., 2013, JECS 160, p. F824.

UTRC model explains why O₂-transport resistance increases as Pt content decreases

Model is commensurate with key operating parameters

Good agreement with experimental sensitivities to both Pt wt% and T

Owejan, J. P., et al., 2013, JECS 160, p. F824

Nonoyama, N, et al., 2011, JECS 158, p. B416

Manuscript on UTRC's Hierarchical Model has been submitted for publication

Ion Power MEAs characterized in collaboration with FC PAD

UTRC model explains why O₂-transport resistance increases as Pt content decreases

UTRC's CCL model has been validated using team's data

- Model validated using:
 - Key CCL parameters measured by UTRC and FC-PAD Consortia, including (and method):
 - Pt Loading (XRF)
 - Ionomer Loading (TGA)
 - Electrode Porosity (multiple measurements)
 - Meso-porosity of Catalyst (from supplier)
 - Agglomerate Diameter (multiple measurements)
 - Ionomer Film thickness (calculated)
 - Catalyst and ionomer properties reported in the literature
 - Isolate GDL transport losses
 - Allows calculation of [O₂] at the GDL-CCL interface
 - Isolate membrane resistance losses
 - In-situ measurements

Comparison of model to data obtained by UTRC on *Ion Power* MEA with Pt loading of approximately 0.1 mg/cm²

Activity on air and half air are increased 31% relative to oxygen and air, respectively, to fit low current data. No other parameters fit.

Model predicts performance on oxygen and air using minimal fitting parameters

Inclusion of Spherical Diffusion near Pt Particles in MEA Model

- Full scale 2-D MEA simulation model in COMSOL
- Multi-component diffusion, electronic conduction, protonic conduction, water transport
- Butler-Volmer kinetics for HOR in anode
- Tafel kinetics for ORR in cathode with agglomerate model
- Local spherical diffusion effects near Pt particles included
 Modified Thiele modulus
 Modified effectiveness factor

- Cell performance is highly sensitive to size of Pt particle
- No spherical diffusion corresponds to $d_{Pt} = 0$
- Bigger Pt particles induce stronger local diffusion effects, and therefore lower performance

Technical Progress: Non-Conventional Catalysts

Pt Thin-Film (TF) electrocatalysts with different microstructures

Tansel Karabacak's Group, University of Arkansas at Little Rock

Collaboration with LANL, ORNL, and ANL

Goal: Producing Pt thin film electrocatalysts with various microstructures and investigate their ORR activity and MEA performance. Approach:

- > Deposit Pt thin film catalysts onto MPL with different sputter growth approaches to control the microstructure (e.g. see SEM and TEM images below).
- Microstructure of the Pt layers deposited on a flat surface (e.g. glassy carbon) and rough surface (MPL) are quite different. Therefore, we are currently developing an in-situ method to obtain CV and RDE profiles of these GDEs, which will be more comparable with MEA tests.

Technical Progress: Results obtained with a UALR-fabricated MEA

- This cell was fabricated by:
 - UALR used GDL as substrate to deposit TF catalyst
 - UTRC built a PEMFC by integrating this UALRcatalyzed GDL with a "half MEA" (membrane with conventional Pt/C catalyst on one side), plus a noncatalyzed GDL
- UTRC ran cell in both Forward and Reverse configurations

	Anode ("forward")		Cathode ("forward')
Pt Loading	0.3 mg/cm ²		0.096 mg/cm ²
GDL	SGL25BC		SGL25BC
Membrane = Nafion [®] 212		Act	ive area = 12.25 cm^2

- These results show that UALR's TF-electrode makes a good Anode with ≈ 0.1 mg Pt/cm²
- Cathode performance is poor, but this is a good result for *first-of-its-kind* MEA

Successfully demonstrated that MEAs can be fabricated from UALR's thin-film catalysts

iR-drop (V)

Collaboration & Coordination Summary

Continued collaboration with Project Partners:

 A variety of custom MEAs, and other materials, were provided by *I.P.* for testing and characterization purposes

 Both UTRC and LANL have tested MEAs fabricated from UALR catalyst (and "½-MEAs" provided by *Ion Power*)

esearch Center

Technologies

UTRC has expanded our collaborations with FC PAD Consortia

- CCL characterization done in a collaboration with:
 - **LANL** (*e.g.*, SEM, XRF, TGA, MIP, and BET)
 - **ORNL** (*e.g.*, TEM of MEAs, CCLs, & catalyst)
- Continue to collaborate with LBNL on modeling work

5 significant collaboration partners on this project, to date

Proposed Future Work

Major goals for the next year of this project:

- Use improved understanding of mass-transport loss mechanisms to improve CCLs & fabricate MEAs with improved performance
- Continue to make improvements to Pt/C-catalyst model
- Develop new microstructure-CCL model with thin-film (TF) catalysts

Milestone I.D.	Tasks	Task Title	Brief Milestone Description
6 (4Q2018)	3, 4	Carbon-supported MEA Fabrication	Demonstrate MEA that can meet 2020 performance targets with high stoichiometric flow rates (<i>e.g.</i> , ≥ 1 W/cm ² at rated power).
7 (1Q2019)	2	Model development and validation	Initial thin-film catalyst CCL structure model completed and incorporated into complete PEFC model that can generate polarization curves with requisite cell operating parameter inputs.
8 Go/No-Go (2Q2019)	2, 3, 4, & 5	Model validation and C-supported MEA performance	Validate microstructural model with improved accuracy, and demonstrate MEA with significantly improved transport-limited performance (<i>e.g.</i> , \geq 905 mW/cm ² at rated power measured using the specified polarization curve protocol in FCTO's MYRDD.

Major focus will be on demonstrating improved MEAs/CCLs with conventional catalysts

Any proposed future work is subject to change based on funding levels

Projected Improvements with Pt/C MEAs

Use UTRC's Hierarchal Model to predict optimal CCL composition

Any proposed future work is subject to change based on funding levels.

Summary

- Major barrier to meeting DOE's 2020 MEA Targets are mass-transport losses in cathode-catalyst layers (CCLs)
- Hierarchal CCL Model incorporates mass transport at multiple length scales and has been validated with two data sets
- Hierarchal CCL Model accurately predicts limiting currents that are proportional to Pt loading, and other trends (*e.g.*, *T*, wt%)
- Hierarchal Model predictions shall be used to develop advanced MEAs with reduced transport losses
- Project includes both conventional (Pt/C) and thin-film (TF) catalysts
- TF-based MEAs have been successfully fabricated and tested

Best path to MEAs with reduced transport losses is accurate CCL model

Acknowledgements

- Rob Darling
- Zhiwei (J.V.) Yang
- Chris Shovlin

Project Partners

• Stephen Grot

- Tansel Karabacak
- Busra Ergul
- Mahbuba Begum

FC PAD Partners

- Rod Borup
- Sarah Stariha
- Natalia Macauley

Karren More

- Adam Weber
- Lalit Pant

TECHNICAL BACK-UP SLIDES

UTRC Cell Performance with Ion Power MEAs

- 1) Cell B1298: SGL25BC/ I.P.-MEA /SGL25BC, 12.25-cm²_SP-triple serpentine, co-flows.
- 2) Cell B1301: Same as B1298, with similar I.P.-MEA (with presumably lower Pt loading)
 - Same components, except "smooth" vs. "wavy" electrodes

Testing conditions: 80°C_100%RH_150kPa abs

UTRC Cell Performance with Ion Power MEAs

- 1) Cell B1298: SGL25BC/ I.P.-MEA /SGL25BC, 12.25-cm²_SP-triple serpentine, co-flows.
- 2) Cell B1300: SGL25BC/ I.P.-MEA /UTRC-GDL, 12.25-cm²_SP-triple serpentine, co-flows.
- Same I.P.-MEA with TEC10V20E catalyst, I.P. ink (1100 EW ionomer), Ionomer/C ratio = 0.8

United Technologies Research Center

Critical Assumptions & Potential Issues

Key technical risks include:

- 1) Fabrication of CCLs with sufficient differentiation to uniquely identify model parameters and/or sufficiently uniform ULCLs
- 2) Capability to adequately characterize structures to provide accurate input for the geometric models.
- 3) Availability of sufficient quantities of alternative catalysts (*e.g.*, thin-film and/or nanoframe structures) to support the fabrication of MEAs by conventional techniques

Normal Thiele modulus without spherical diffusion is defined as:

$$\phi_0 = \frac{r_{agg}}{3} \sqrt{\frac{k_c}{D_{O_2N} \epsilon_{agg}^{1.5}}},$$

where, r_{agg} -agglomerate core radius, D_{O_2N} diffusivity of oxygen in bulk ionomer, ϵ_{agg} fraction of ionomer in agglomerate, k_c -reaction constant.

The corrected Thiele modulus after adding spherical diffusion is defined as:

$$\phi = \frac{\phi_0}{\sqrt{1 + \varphi \exp\left(\frac{-\alpha F}{RT}\eta\right)}}$$

where, φ is given as:

$$\varphi = \frac{d_{pt}i_0}{4FD_{O_2N}\epsilon_{agg}^{1.5}c_{O_2}^{ref}},$$

 d_{pt} is the diameter of platinum particle.

Conventional effectiveness factor based on corrected Thiele modulus is given as:

$$E_r^0 = \frac{1}{\phi} \left(\frac{1}{\tanh(3\phi)} - \frac{1}{3\phi} \right),$$

The updated effectiveness factor describing diminishing of total current w.r.t. kinetic current at surface is given as:

$$E_r = \frac{E_r^0}{1 + \varphi \exp\left(\frac{-\alpha F}{RT}\eta\right)}$$