

Vapor Deposition Process for Engineering of Dispersed PEMFC ORR Pt/NbO_x/C Catalysts

P.I. – Jim Waldecker Ford Motor Company June 14, 2018

FC162

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 1/1/2017
- Project End Date: 3/31/2020
- Percent complete: 30%

Budget

- Total project budget: \$2,594,412
 - Total recipient share: \$518,883
 - Total federal share: \$2,075,529
 - Total DOE funds spent*: \$527,629
 - * As of 3/31/2018

Barriers

- A. Durability
- B. Cost
- C. Performance

Partners

- Oak Ridge National Laboratory
 - Small batch catalyst production
- Exothermics, Inc.
 - Large batch catalyst production
- University of Michigan
 - TEM, XPS, other characterization
- Northeastern University
 - X-ray absorption spectroscopy
- EWII Fuel Cells LLC
 - CCM fabrication, fuel cell testing

Other contributions: Strategic Analysis (cost analysis), FC-PAD (catalyst layer microscopy), NREL (mass transport resistances)

Relevance

<u>**OBJECTIVE</u>**: Develop, integrate, and validate a new cathode catalyst material by developing and optimizing a vacuum powder coating physical vapor deposition (PVD) process</u>

- Develop a New Cathode Catalyst Powder
 - Pt/NbOx/C for high durability, power density, mass activity
- Improve the Catalyst Powder Manufacturing Process
 - PVD with superior reproducibility over solution based methods
- <u>Demonstrate the PVD Process is Scalable in a Cost Effective</u>
 <u>Manner</u>
 - Scale up from small batch (~ 1-2 g) to large batch (20-40 g)
- <u>Show Ease of Integration</u>
 - Powders amenable to already established CCM/MEA manufacturing processes (ink processes)

This project focuses not just on a higher performing and more durable novel catalyst, but also on making the catalyst with a reproducible, scalable process.

Relevance: Targets and Status

The targets below are specified as part of quarterly milestones or go/no-go decisions:

MYRDD Table 3.4.5 Technical Targets: MEAs for Transportation Applications

Characteristic	Units	2020 Target	Project Status						
Performance at rated power	mW/cm ² at 150 kPa (abs)	1000	750 ¹ , 720 ²						
MYRDD Table 3.4.7 Technical Targets: Electrocatalysts for Transportation Applications									
Characteristic	Units	2020 Target	Project Status						
PGM content at rated power	g _{PGM} /kW _{gross} at 150 kPa (abs)	0.125	0.200 ¹ , 0.208 ²						
PGM loading	mg _{PGM} /cm ² total	0.125	0.150 ^{1,2}						
Mass activity	A/mgPGM at 900 mV _{iR-free}	0.44	0.352 ¹ , 0.335 ²						
Electrocatalyst stability (0.6 \leftrightarrow 0.95 V)	% mass activity loss after 30K cycles	<40	TBD						
Loss at 0.8 A/cm ² (0.6 \leftrightarrow 0.95 V)	mV loss after 30K cycles	<30	TBD						
Support stability (1.0 \leftrightarrow 1.5 V)	% mass activity loss after 5K cycles	<40	TBD						
Loss at 1.5 A/cm ² (1.0 \leftrightarrow 1.5 V)	mV after 5K cycles	<30	TBD						

¹ Measured using Exothermics 180308 (PtCo/NbOx/Ketjen black). High current measurements at 0.6 V, 80°C (Q/ΔT=2.44), fully humidified. ² Measured using ORNL-L-013 (Pt/NbOx/acetylene black). High current measurements at 0.6 V, 80°C (Q/ΔT=2.44), fully humidified.

Go/no-go drove early focus on activity. Durability, high current testing still to come.

Approach: PVD to Simplify Processing, Niobia for Stability

- <u>Physical vapor deposition</u> (PVD) for the production of an oxygen reduction catalyst has many advantages:
 - Improved reproducibility from elimination of a large number of production variables
 - No impurities from precursors or solvents
 - In principle, no drying or post-synthesis annealing is needed
 - Deposition of controlled stoichiometry Nb_xO_{1-x} suboxide phases
 - Nb/O ratios controlled by metering molar ratio of reactive and non-reactive gaseous species via reactive magnetron sputtering.
- Sputtering onto a powder support to generate a powder catalyst allows use of conventional MEA fabrication technology
- PVD processing onto powders provides this project a unique position in the DOE catalyst portfolio

- <u>Niobium oxide</u> has been cited for enhancing ORR activity, but in this project, durability is the motivation.
- Prior work suggested NbOx networks may help to pin Pt particles.

As prepared

Arc plasma deposition Pt/NbOx/C sample showed welldispersed Pt, Nb. Following 25K 0.1-1.0 V cycles, Pt particles grew, but NbOx network appeared to "pin" Pt particles.

Connected network of 17.6 wt% NbOx deposited on acetylene black using magnetron sputtering at ORNL

PVD can be used to generate a carbon-supported Pt powder. NbOx can be used to help anchor Pt on carbon.

Approach: PVD Methods

Ford arc plasma deposition (small batch)

PVD can be done on powders:

- Arc plasma deposition (350°C) downwards into a rotating chamber
 - Low batch size; useful for surveying new powder compositions
- Magnetron sputtering onto powder agitated by tumbling
 - Scalable to large batch size

DC magnetron sputtering chamber at Oak Ridge National Laboratory (small batch)

ORNL and Ford were able to provide a high number of small batch sample to determine trends with composition. Exothermics is providing large batch samples.

Approach: PVD Cost Estimation

Strategic Analysis study included:

- Dual barrel system design
- Capital equipment sizing
- PVD operating assumptions
 - 70 kg batches,
 63/year/chamber
 - 95.9 hour cycle time (each cycle with 31 labor hours)
- Bill of materials and summation of total capital costs for system: \$1.37M
- Operational costs including sputtering and recycle
 - 37.5% target metal utilization
 - Recovery every 10 cycles
 - 95% Pt, Nb recovery

		Baseline	Alternative
	Units	PtCo/HSC	PVD PtNbOx/C
Catalyst Usage (mass to inking			
station)	gCatalyst/system	30.25	34.56
Pt mass fraction	gPt/gCatalyst	28.56%	25%
Pt Usage (mass to inking station)	gPt/system	8.639	8.639
Cathode Loading	mgPt/cm2	0.1	0.1
Catalyst yield (on total process)	Net / Gross	95%	100%
Cost Summary			
Pt Cost (net)	\$/system	\$442.33	\$425.54
Processing Cost	\$/system	\$34.40	\$13.80
QC	\$/system	\$4.59	\$4.59
Packaging	\$/system	\$0.23	\$0.23
Total	\$/system	\$481.55	\$444.16
Total	\$/kW	\$6.02	\$5.55
Delta to Baseline	\$/system	NA	-\$37.39
Delta to Baseline	\$/kW	NA	-\$0.47

Exothermics provisionally agrees with the SA cost analysis. However, Exothermics does recommend a sensitivity study be done on capital cost and amortization time.

- Labor is accurate
- Inputs well accounted for
- May be opportunities to reduce cost associated with making Pt, Nb targets

PVD process can result in processing cost savings versus baseline catalyst

Approach: Tasks and Schedule

	Quarter	0	1	2	3	4	5	6	7	8	9	10 1	1 12
TAS	K 1: Development, Characterization, and Valida	ation	of	Cata	alyst	Ma	er	ial	and	Dev	/elo	pment	and
Imp	lementation of PVD process parameters		-										
1.1	Develop the Catalyst Matrix		8										
1.2	Small Batch Catalyst Synthesis and Carbon				2								
	Fluidization												
1.3	Catalyst Powders Materials Characterization												
1.4	Synthesis of Catalytic Material with Solution												
	Based Method												
1.5	Target Processing, Chamber Conversion, and												
	Large Batch Carbon Nanoparticle Vacuum												
	Fluidization												
1.6	XAS Evaluation of BOL, Cycled Catalyst Powders												
1.7	Processing of Large Batch Sputter Deposition on		25										
	Powder												
TAS	K 2: Catalyst Layer Development and MEA Valid	atio	n				Г						
2.1	Baseline Materials Specification and Testing						Г						
	Protocol Development for DOE MEA Validation												
	Cycling												
2.2	Catalyst Layer and MEA Development with												
	Process Optimization												
2.3	MEA BOL Validation		23										
2.4	MEA Cycling Validation												
TAS	SK 3: Project Management and Reporting												
3.1	ProjectManagement												
3.2	Documentation and Reporting												

- Small batch and large batch catalyst synthesis are ongoing, as well as characterization, MEA development, and BOL validation
- MEA cycling is still forthcoming (Q6 until end of project)

Catalyst synthesis and characterization, and MEA BOL validation are proceeding. Durability testing is scheduled to begin in Q6 (Jul-Sep 2018).

Budget Period 1 Milestones: 1/1/2017 – 3/31/2018

Milestone #1 (Q1): Demonstrate that small batch PVD catalyst synthesis has a narrow metal particle size distribution (2-10nm) on the carbon powder via TEM	Line-of-sight sputtering yields wide Pt particle size distributions. High pressure sputtering could help, but experimental scope may be large. Future particle size distribution milestones removed.
Milestone #2 (Q2): Demonstrate that small batch PVD catalyst synthesis is able to reliably reproduce Pt and Nb loadings (with <10% variation) on the carbon powder by XRF measurement.	Repeatability shown for Pt within +/- 10% of average. Nb within +/- 40% at very low average weight percent (0.9%).
Milestone #3 (Q3): RDE testing of PVD Pt/NbOx/HSAC catalysts demonstrates a BOL mass activity (at 0.9 V) above 0.40 A/mg _{PGM}	Project has shown 23 samples to have met this milestone: 10 from ORNL, 8 from Ford APD (small batch), and 5 from Exothermics (large batch). 14 non-alloyed, 9 alloyed. Pt wt% from 13-71% (22 with 17% or higher).
Go/No-Go Decision Point for Budget Period 1 (end of Year 1):Validation of PVD deposited catalyst powders via MEA BOLTesting with 40-50 cm² single cell having a cathode loading of $\leq 0.150 \text{ mg}_{PGM}/\text{cm}^2$ giving a BOL mass activity of ≥ 0.30 A/mg _{PGM} at 900 mV _{iR-free} following the protocols given in Table3.4.7 of FCTO's MYRDD Plan.	Project has shown 4 samples to have met this milestone: 1 from ORNL (small batch), 3 from Exothermics (large batch). 2 non- alloyed, 2 alloyed.

Project has passed go/no-go and RDE activity milestone.

Repeatability milestone is pending.

Particle size distribution milestone may not align with reality of catalyst characteristics.

9

Budget Period 2 Milestones: 4/1/2018 – 3/31/2019

<u>Revised</u>: Milestone #4 (Q5): Determine Pt, NbOx, C interactions in PVD Pt/NbOx/C catalysts using elemental mapping, TEM, XAS, XPS; provide comparisons between PVD Pt/NbOx/C and Pt/C

<u>Revised</u>: Milestone #5 (Q6): Durability comparison between PVD Pt/NbOx/C, PVD Pt/C, and Pt/C

Milestone #6 (Q7): Large batch PVD catalyst - > 500 mW/cm² at Q/ Δ T_i < 1.45 kW/°C, 0.125 mg_{PGM}/cm², P_{air.in} ≤ 150 kPa

EWII

EWI

EXOTHERM

EWI

Exotherm

10

EWII

Milestones #7-8 (Q8): < 40% mass activity loss and < 100 mV loss at 0.8 A/cm² in electrocatalyst cycle (0.6-0.95 V); < 40% mass activity loss and < 200 mV loss at 1.5 A/cm² in support corrosion cycle (1-1.5 V)

<u>Go/No-go Decision Point for Budget Period 2 (end of Year 2)</u>: Large batch PVD catalyst, total loading of \leq 0.125 mg_{PGM}/cm²: BOL mass activity of \geq 0.30 A/mg_{PGM}. Mass activity following electrocatalyst and support cycling > 0.21 A/mg_{PGM} (70% of 0.30 A/mg_{PGM}).

Budget Period 3 Milestones: 4/1/2019 – 3/31/2020

Milestone #10 (Q9): Large batch PVD catalyst - 1) mass activity > 0.40 A/mg_{PGM} and 2) electrocatalyst AST (30K cycles) with < 40% loss in mass activity (RDE)

Milestone #11 (Q10): Large batch PVD catalyst, $\leq 0.125 \text{ mg}_{PGM}/\text{cm}^2 - BOL$ mass activity of $\geq 0.44 \text{ A/mg}_{PGM}$

Milestone #12-14 (Q11): Large batch PVD catalyst - > 1,000 mW/cm² at Q/ Δ T_i < 1.45 kW/°C, for 0.125 mg_{PGM}/cm², P_{air,in} ≤ 150 kPa; < 40% mass activity loss and < 30 mV loss at 0.8 A/cm² in electrocatalyst cycle (0.6-0.95 V); < 40% mass activity loss and < 30 mV loss at 1.5 A/cm² in support corrosion cycle (1-1.5 V)

Milestone #15 (Q12): A set of MEAs (6 or more, each with active area \geq 50 cm²) is made available for independent testing at a DOE-approved location.

Budget Period 2 milestones revised to focus on material characterization and durability

Any proposed future work is subject to change based on funding levels.

Accomplishments and Progress: ORNL Synthesis

- As of the 2017 AMR, the project had shown high RDE activity for PVD Pt/C made in small batches at ORNL. Concerns existed about low Pt wt%.
- Initial PVD Pt/NbOx/C samples at ORNL had low NbOx wt%
 - Systematic study mapped NbOx wt% to Ar:O₂ ratio, Nb target power (0-19 wt% NbOx without Pt)
 - Systematic study mapped Pt wt% to deposition time, Pt target power for both Pt/NbOx/C and Pt/C (23-65 wt% Pt)
 - Issues with low Pt, Nb wt% were overcome
- Early ORNL samples from "Baby Chamber" could not achieve ECSA > 49 m²/g, despite use of acetylene black (AB) support
 - Switch to "Big Chamber" with two targets
 - Maintained vacuum between Pt and Nb sputtering and increased ECSA

Chamber environment, target powers and deposition time were adjusted to achieve sufficient Pt, NbOx wt%. Chamber with two targets used to achieve higher ECSA.

Accomplishments and Progress:

Passed GNG

Exothermics Synthesis

Sample	Nb Deposition: Ar/O ₂ Ratio	Nb Deposition Time (hrs)	Nb Deposition Power (W)	Pt Deposition Time (hrs)	Pt Deposition Power (W)	Carbon Support	Pt wt%	Co wt%	NbOx wt%
170731	32.3	6	400	N/A	N/A	J32	0	0	13.3
170822	32.3	6	400	2.5	400	J32	10.6	0	6.3
170915	N/A	N/A	N/A	3	500	J32	37.5	0	0
171106	32.3	6	400	5	300	J32	23.9	0	5.14
171117	32.3	6	400	5	300	J32	19.7	0	5.52
180109	32.3	8	100	5	300	Ketjen	19.9	0	1.75
180119	N/A	N/A	N/A	5	300	Ketjen	24.8	0	0
180201	N/A	N/A	N/A	5	300	Ketjen	23.2	0	0
180209	N/A	N/A	N/A	5	300	Ketjen	26.8	0	0
180302	32.3	8	100	5	300 (PtCo)	Ketjen	21.5	1.10	0.23
180308	49	8	100	5	300 (PtCo)	Ketjen	28.8	1.54	0.50

• Exothermics batches showed somewhat predictable changes in Pt, NbOx wt% with changes in synthesis conditions. Pt-only samples within +/- 10%.

Exothermics sample weight percents qualitatively showed expected response to synthesis parameters. PtCo sputtering feasibility shown.

Accomplishments and Progress: Pt Particle Sizes

Exothermics 180109 (19.9% Pt)

20 nm

ORNL2-023 (60.8% Pt)

ORNL2-022 (23.1% Pt)

UM TEM showed that line-of-sight sputtering can lead to both areas where particles are heavily clustered, as well as areas where particles are sparse. The result is a wide particle size distribution. Average particle sizes for both ORNL and Exothermics are near 2 nm, but distributions are wide.

particle size distributions.

2711 TAVE 187

Exothermics 180308 (28.8% Pt)

20 nm

Accomplishments and Progress:

X-Ray Characterization

From standard Nb₂O₅, the UM XPS measured 207.89 eV for the Nb $3d_{5/2}$ peak. Average ORNL sample: 207.17 eV. Average Exothermics: 207.42 eV.

NEU EXAFS data from early ORNL samples shows no strain effect, lack of Pt-Nb interaction.

Surface Nb oxidation state shown by XPS to be lower than +5, although EXAFS shows it can be +5 in the bulk. No Pt-Nb alloying has been shown.

Northeastern University Center for Renewable Energy Technology

Accomplishments and Progress: Milestone #2

- Milestone #2: Demonstrate that small batch PVD catalyst synthesis is able to reliably reproduce Pt and Nb loadings (with <10% variation) on the carbon powder by XRF measurement.
- ORNL sought to show repeatability on Big Chamber.
 - Acetylene black carbon baked for 12 hours at 400°C
 - Nb reactive sputtering: 10:1 Ar:O₂, 150 W, 1.5 hours
 - Pt sputtering: Ar, 140 W, 1 hour
 - <u>Pt</u>: A variation of +/- 1 standard deviation (2.4 wt%) is slightly over 10% of the average weight percent for Pt. Milestone is close to being met.
 - <u>Nb</u>: +/- 1 standard deviation (0.38 wt%) is 42% of the average weight percent; however, signal/noise is low.

Sample	Pt wt%	NbOx wt%
ORNL-L-012	22.5	1.19
ORNL-L-015	20.7	0.92
ORNL-L-016	21.7	0.92
ORNL-L-017	19.3	0.77
ORNL-L-018	21.2	0.70
AVERAGE	21.1	0.90
ST. DEV.	1.2	0.19

Milestone is close to being met with improved techniques at ORNL. NbOx weight percent may need to be higher for more meaningful results.

Accomplishments and Progress: Milestone #3

RDE testing of PVD Pt/NbOx/C catalysts demonstrated mass activity • $> 0.4 \text{ A/mg}_{PGM}$ for 23 samples

10 of these samples are small batch samples made at ORNL —

Sample	Composition (AB = acetylene black, KB = Ketjen black, J32 = graphitized)	Mass Activity (A/gPGM)	Specific Activity (uA/cm² _{Pt})	ECSA (m²/g)
ORNL2-010	47.3% Pt, 0.50% NbOx, AB	591	1229	43
ORNL2-011	57.5% Pt, 0.81% NbOx, AB	436	1122	39
ORNL2-022	23.1% Pt, 1.46% NbOx, AB	513	1047	49
ORNL2-023	60.8% Pt, 0.94% NbOx, AB	477	1157	41
ORNL2-024	46.1% Pt, 0.24% NbOx, AB	529	1314	40
ORNL2-031	62.2% Pt, 0.59% NbOx, AB	456	1086	42
ORNL-L-010	55.1% Pt, 1.41% NbOx, AB	452	721	63
ORNL-L-011	71.0% Pt, 0.73% NbOx, AB	457	982	47
ORNL-L-012	22.5% Pt, 1.19% NbOx, AB	503	584	86
ORNL-L-013	35.8% Pt, 0.61% NbOx, AB	490	695	71

"ORNL2-..." series produced on Baby Chamber. "ORNL-L-..." series produced on Big Chamber. Nb deposition for all samples performed with 10:1 Ar:O₂ environment for 1.5 hours at 150 W. Pt deposition for all samples in Ar environment. Deposition times range from 1 to 6 hours. Pt deposition power was 140 W for all samples except ORNL2-023 and -031 (70 W).

Pt/NbOx/C samples with wide range of Pt wt% showed high mass activity

Accomplishments and Progress: Milestone #3

- 5 samples from Exothermics (large batch)
- ExoTHERMICS

- 8 samples from Ford APD (small batch)

Sample	Composition (AB = acetylene black, KB = Ketjen black, J32 = graphitized)	Mass Activity (A/gPGM)	Specific Activity (uA/cm² _{Pt})	ECSA (m²/g)
Exothermics 171117	19.7% Pt, 5.52% NbOx, J32	420	806	50
Exothermics 180109	19.9% Pt, 1.75% NbOx, KB	519	730	71
Exothermics 180302	21.5% Pt, 1.10% Co, 0.23% NbOx, KB	653	926	67
Exothermics 180302-HNO3	17.3% Pt, 0.49% Co, 0.17% NbOx, KB	652	901	72
Exothermics 180308	28.8% Pt, 1.54% Co, 0.50% NbOx, KB	672	885	76
Ford APD-11062017	21.3% Pt, 2.39% NbOx, J32	461	693	67
Ford APD-01102018	30.2% Pt, 3.75% NbOx, AB	429	515	83
Ford APD-02052018	17.7% Pt, 1.58% Ni, 1.07% NbOx, J32	539	504	107
Ford APD-02082018	17.5% Pt, 1.36% Co, 1.07% NbOx, J32	455	480	95
Ford APD-02082018-HNO3-1hr	18.7% Pt, 0.39% Co, 1.21% NbOx, J32	538	489	110
Ford APD-02082018-HNO3-0hr	19.3% Pt, 0.38% Co, 1.25% NbOx, J32	531	605	88
Ford APD-03022018	13.9% Pt, 1.17% Co, 1.43% NbOx, J32	449	634	71
Ford APD-04152018	22.5% Pt, 2.15% Co, 2.12% NbOx, AB	607	883	69
Ford wet chemistry	23.4% Pt, 18.4% NbOx, AB	265	359	74

Exothermics samples made as described on previous slide. Ford APD used 150 V for NbOx sputtering and 100 V for Pt/PtNi/PtCo sputtering. 11062017: 2.5K/40K pulses NbOx/Pt at 300°C. 01102018: 3.5K/45K pulses at 370°C. All others: 3K/80K pulses at 300°C. "-HNO3" indicates dealloying through HNO₃ acid treatment.

Use of KB helped to increase Exothermics surface area and activity. Alloying impact more pronounced for Exothermics than Ford APD.

Accomplishments and Progress: NEU Study on Exothermics Alloy

- Good agreement on Pt/Co atomic ratio between XRF and XAS.
 - Atomic ratio from XRF for Exothermics 180302: 5.6

(0.66*4.5 Pt mol in edge step)/(0.093*5.6 Co mol in edge step) = **5.7**

Most Co in oxide, not alloy → Some Co gets dissolved.

However, despite the lesser alloying, there is still a strain effect:

0.54 V	R_{Pt-Pt} (Å)	N _{Pt-Pt}
180302BS	2.740(4)	8.5(8)
Pt/C TKK	2.753(3)	8.9(5)
Pt foil	2.766(4)	12

Alloying in Exothermics PtCo/NbOx/C not as effective as expected, but does exist.

Accomplishments and Progress: Ford Cell Testing

- Ford polarization curves measured under differential conditions using SGL 29BC GDL and a supplier half-CCM for anode/membrane.
- Catalyst mixed at low solid percentage in IPA/water solvent and then sonicated. Catalyst ink applied directly to the membrane through ultrasonic spray deposition

	Sample	HFR (mΩ*cm²)	H ₂ x-over (mA/cm ²)	MA (A/g _{Pt})	ECS (m²/
=- Exo-180302 -	ORNL-L-013	44	5	335	23
	Exo 180109 ¹	53	5	113	30
◆ - · WChem-Pt/NbOx -	Exo 180302 ¹	66	5	208	50
	Exo 180308	49	5	352	36
	APD-01102018	49	5	288	17
2	APD-11062017	48	5	270	39
forced	Wet chemistry	46	5	123	10

¹ Mass activities for Exothermics 180109 and 180302 were later measured at EWII with EWII ink recipes. Values in this table should be taken to represent the Ford ink recipe.

At 0.6 V, g/kW_{gross} for Exothermics 180308 = (0.15 mg_{Pt}/cm²)/(0.6 V * 1.25 A/cm²) = 0.2. However, at 80°C and 0.6 V, Q/ΔT=2.44 (> 1.45). There is still more work to do on mass transport or proton transport losses.

Fuel cell testing demonstrated achievement of activity targets, but also showed more progress needs to be made on high current performance.

Cathode with I/C=0.6, 0.1mg/cm² 80C 150kPa &100%RH 5cm²

Accomplishments and Progress: EWII Cell Testing

• Fuel cell mass activity on Exothermics 180302:

MEA S/N	Cathode Catalyst [Exothermics]	Cathode Loading (mg/cm²)	I/C	OCV	HFR (mΩ*cm²)	ECA (m²/g)	MA (A/g Pt)
1 st trial – Sta	andard recipe						
N1PFB-A	PtCo/NbOx/C -180302	0.15	0.80	944	54	11	53
N1QGV-A	PtCo/NbOx/C -180302	0.10	0.80	940	48	28	99
2 nd trial – St	andard recipe						
N1PFB-B	PtCo/NbOx/C -180302	0.15	0.80	960	42	19	160
3 rd trial – "Ke	etjenblack" recipe						
N1QMS-A	PtCo/NbOx/C -180302	0.10	0.30	970	63	17	246
N1QOF-A	PtCo/NbOx/C -180302	0.10	0.50	980	51	17	309
N1QTM-A	PtCo/NbOx/C -180302	0.10	0.80	970	54	15	168

• Fuel cell mass activity on Exothermics 180109:

MEA S/N	Cathode Catalyst [Exothermics]	Cathode Loading (mg/cm²)	I/C	OCV	HFR (mΩ*cm²)	ECA (m²/g)	MA (A/g Pt)
1st trial – Stan	dard recipe						
N1PBD-A	Pt/NbOx/C -180109	0.15	0.80	930	88	8.3	94
N1PGX-A	Pt/NbOx/C -180109	0.10	0.80	910	43	12.7	270
2 nd trial – "Ket	jenblack" recipe						
N1QUX-A	Pt/NbOx/C -180109	0.10	0.30	960	60	18.1	260
N1RBC-A	Pt/NbOx/C -180109	0.10	0.50	940	57	19.2	317
N1RGN-A	Pt/NbOx/C -180109	0.10	0.80	950	54	15.1	328

- Anode: 0.05
 mg_{Pt}/cm²
- 50 cm² FCT cell
- 16-minute holds

Older "Ketjenblack" recipe found to be preferred for higher mass activity

Higher I/C (0.8) lowered mass activity for PtCo, but not for Pt

EWII believes low ECA may be a data analysis issue

High mass activity achieved at EWII with older ink recipe, 0.15 total loadings.

Accomplishments and Progress: GNG 1

- Go/No-Go Decision Point for Budget Period 1 has been passed
 - Four catalysts showed > 300 A/g_{PGM} mass activity

Sample	Composition (AB = acetylene black) (KB = Ketjen black)	Mass Activity (A/g _{Pt})	Test at:	Cell Size (cm²)	I/C	Cathode / Anode Loadings (mg/cm ²)
ORNL-L-013	35.8% Pt, 0.61% NbOx, AB	335	Ford	5	0.6	0.1/0.05
Exothermics 180109	19.9% Pt, 1.75% NbOx, KB	328	EWII	50	0.8	0.1/0.05
Exothermics 180302	21.5% Pt, 0.23% NbOx, 1.10% Co, KB	309	EWII	50	0.5	0.1/0.05
Exothermics 180308	28.8% Pt, 0.50% NbOx, 1.54% Co, KB	352	Ford	5	0.6	0.1/0.05

Fabrication conditions:

- ORNL-L-013: AB carbon off-gassed at 400°C for 12 hours, followed by Nb sputtering in 10:1 Ar:O₂ environment for 1.5 hours at 150 W. Pt sputtering followed in Ar for 1.5 hours at 140 W.
- Exothermics samples were off-gassed at >200°C, and sputtered at >100°C. Nb sputtering was done in 3% O₂/Ar for 180109 and 180302 (2% for 180308) for 8 hours at 100 W. Pt or PtCo sputtering followed in Ar for 5 hours at 300 W.

Both small and large batch samples have passed the go/no-go criteria

Accomplishments and Progress: Reviewer Comments

- "Unfortunately, the PI's team continues in this tradition of having poor RDE results. The PI quotes the project's RDE Pt/C activities at 0.2 A/cm² per Gasteiger's 2005 paper. Since then, Garsany et. al. (*Journal of The Electrochemical Society*, 161 (5) F628-F640 [2014]), with improved methodology, moved the benchmark from around 0.2 A/mg Pt at 0.9 V and 1600 rpm in 0.1 M HClO₄ to 0.4 A/mg Pt."
 - Response: Other than Milestone #3, project targets are based on fuel cell measurements, not RDE. Project has decided to devote resources to refining fuel cell testing, not RDE. RDE was used for screening and noting trends.
- "There should be cost analysis to account for capital expenditures or operational expenditures of the sputter system at scale."
 - Response: Strategic Analysis prepared the cost analysis shown. Exothermics mostly
 agrees and will discuss further refinements in estimating capital costs.
- "A go/no-go decision based on the long-term stability of the Pt/NbOx/C catalysts and cost savings versus existing Pt/C catalysts should be made in Budget Period 1, not later. No fundamental science on Pt-niobia or niobia-C interaction is planned, despite the project's having university partners."
 - Response: Budget Period 1 GNG remained focused on mass activity, but milestones and a GNG associated with stability have been prioritized in Budget Period 2. Cost savings versus PtCo/C has been addressed with added cost analysis. Milestone #4 (Q5) will address Pt-niobia and niobia-C interactions, in addition to some of the work already done by Northeastern University.

Collaborations

Partner	Project Roles
Ford	Prime, Industry. Responsible for project management (Task 3), XRF measurements for Pt, Nb wt%, RDE testing (Task 1). Support role for MEA fabrication and fuel cell testing (Task 2).
CAK RIDGE National Laboratory	FFRDC partner. Responsible for production of small batch Pt/NbO _x /C and for transferring lessons learned small batch catalyst optimization to Exothermics for large batch production. (Task 1)
ExoTHERMICSING	Sub-contractor, Industry. Responsible for production of large batch Pt/NbO _x /C. Can support with BET, skeletal density characterization. (Task 1)
UNIVERSITY OF MICHIGAN	Sub-contractor, University. Responsible for TEM and particle size measurements, as well as SEM, XPS, and other characterization techniques. (Task 1)
Center for Renewable Energy Technology	Sub-contractor, University. Role is to help understand by XAS whether coordination numbers, interatomic distances, and the presence of adsorbates (e.g. –OH) influence performance and durability (Task 1).
EWİİ	Sub-contractor, Industry. Responsible for MEA fabrication using Pt/NbOx/C catalysts on the cathode, and for fuel cell testing (Task 2).

Future Work

- Durability and materials characterization are the highest priorities for Budget Period 2
 - Added milestone for comparing PVD Pt/NbOx/C vs. PVD Pt/C vs. conventional Pt/C with the DOE electrocatalyst cycling AST.
 - Materials characterization to understand Pt, niobia, and carbon interactions in high activity catalysts using elemental mapping, TEM, XPS, XAS.
 - Mapping to be conducted for powders and for catalyst layers (FC-PAD).
 - XAS to continue on high activity samples, including Nb EXAFS
- Electrocatalyst and support corrosion ASTs
- Mass transport losses: Technology Service Agreement (TSA) has been signed with NREL as of December 2017. NREL will measure mass transport resistances for high activity catalyst layers as part of the TSA.
- Wet chemistry Pt/NbOx/C: sample needed with lower NbOx to provide more direct comparison with PVD samples
- Further refinements needed for ORNL repeatability, as well as for capital cost estimations from Strategic Analysis
- Continued sample synthesis at Exothermics

Any proposed future work is subject to change based on funding levels.

Summary

- Project motivated by reproducibility and processing simplifications offered by PVD, as well as by durability opportunities offered by use of niobium oxide as a secondary support.
- Strategic Analysis cost analysis costs the possibility of a lower cost fuel cell system with use of PVD catalysts.
- Budget Period 1 go/no-go target of 300 A/g_{PGM} has been met with both small and large batch PVD Pt/NbOx/C materials.
- ORNL demonstrated that high Pt wt% is achievable. Low ECSA in early ORNL samples addressed by switch to larger two-target system.
- Exothermics has been able to consistently produce large catalyst batches with weight percentages roughly consistent with changes in synthesis controls.
- Materials characterization has shown wide particle size distributions related to line-of-sight sputtering for both small and large batch samples.
- XPS shows lower surface oxidation states for Nb versus those observed in the bulk by EXAFS.
- EXAFS indicated no Pt-Nb alloying, as well as a small alloying effect for between Pt and Co in samples made from the Exothermics PtCo target.
- ORNL is close to repeatability for Pt and Nb weight percentages in small batch samples
- 23 PVD Pt(or Pt alloy)/NbOx/C samples exceeded 400 A/g_{PGM} in RDE. Exothermics samples did appear to show some activity gain with increased surface area and alloying.
- Collaborators have all made substantial contributions, including catalyst synthesis at ORNL and Exothermics, TEM/XPS at UM, XAS at NEU, and fuel cell testing at EWII
- Future work is focused on durability, materials characterization, and high current performance, with continued efforts on catalyst synthesis and repeatability.

TECHNICAL BACKUP SLIDES

FC-162

Acknowledgments

• Ford

- Jun Yang
- Chunmei Wang
- Owen Lu
- Chunchuan Xu
- Mark Sulek
- Exothermics
 - Stephen DiPietro
- Oak Ridge National Lab

 Gabriel Veith

- University of Michigan
 - Kai Sun
- Northeastern University
 - Sanjeev Mukerjee
 - Qingying Jia
 - Serge Pann
- EWII
 - Madeleine Odgaard
 - Debbie Schlueter

Iso-Mass Activity Plot (RDE)

