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Project Overview 
Timeline 
• Project Start Date:  Oct 1, 2017 

Project End Date: Sept 30, 2020   
Budget 
• Total $2.49 million  
    - DOE share $1.99 million and cost  

sharing $500, 744  
    -  Spent $ 239, 075 (by 4/30/2018) 
Giner Personnel 

• Chao Lei and Magali Spinetta  

Collaborators 
• SUNY-Buffalo: Prof. Gang Wu 
• U. of Pitts.: Prof. Guofeng Wang 
• GM: Dr. Anusorn Kongkanand 
    

Barriers Addressed 
• Durability (catalyst; MEA) 
• Cost (catalyst; MEA) 
Technical Targets  
• Design Mn-based PGM-free 

catalysts to meet  DOE catalyst 
activity >0.044 A/cm2 @ 0.9 VIR-free 
in a MEA test  

• The catalyst extends the durability 
by 50% (compared to state-of-the-
art PGM-free catalyst)  

• The catalyst mitigates membrane 
degradation caused by Fe-based 
catalysts by 50% 
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Relevance 
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 Catalyst cost still a major contributor to high fuel cell price 
 Pt price volatility and supply shortage with mass production of fuel cells  
 Development of non-PGM catalyst can likely resolve the issues 



  Mn Based PGM-free Catalyst  
      - Catalyst Design: Improving Durability  
       
 
 
 
     - MEA Design:  Reducing PEM degradation   

 
 

 
 
 
 
 
 

 
 
 

     

Motivation 

 PGM  Catalyst 
      - High cost 
      - Scarcity  
      - Catalyst poisoning       

 Fe Based PGM-free Catalyst 
    - Insufficient stability 
    - Membrane degradation 



 
 

Technical Approach 

A strong team was formed to transform 
the discovery of Mn-based catalyst into 
fuel cell application with expertise in the 
following areas: 

 Catalyst modeling 
 Catalyst synthesis 
 MEA fabrication 
 Fuel cell system integration  



Tasks, Milestones, and Performance Period 

All the milestones are on track! 



Model of Nine Possible Active Sites 

*  Gray, blue, purple, and white balls represent C, N, Mn, and H atoms, respectively  

(a) MnN2C12 site: single Mn with two N; 

(b) MnN3C11 site: single Mn with three N; 

(c) MnN3C9 site: single Mn with three N; 

(d) MnN4C8 site: single Mn with four N; N 
are on six-carbon rings; at pore edge; 

(e) MnN4C10 site: single Mn with four N; N 
are on six-carbon rings; inside basal 
plane; 

(f) MnN4C12 site: single Mn with four N; N 
are on five-carbon rings; 

(g) MnN5C10 site: single Mn with five N;  

(h) Mn2N5C12 site: double Mn with five N;  

(i) Mn2N5C14 site: double Mn with six N.  
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Technical Accomplishment 

Met Milestone 1-2: Predict 6 planar and non-planar Mn-containing active sites 



Modeling Results Technical Accomplishment 

Free 
Energy 

 Free energy keeps decreasing  under the electrode potentials  
        - Below 0.54 V on MnN4C10, 0.80 V on MnN4C12 and 0.58 V on MnN5C10   
 These three single metal sites all are active for ORR 
 MnN4C12 being the most promising one.  

Adsorption 
Energy 

Met Milestone 1-1: Identify 2 key descriptors for modeling catalyst activity and durability  



 Unfavorable for Mn ions to replace original Zn, previous one-step chemical doping method 
is not efficient (E1/2= 0.7 V). 

 Mn-NC possesses abundant micropores doped with N, which enables the adsorption of 
additional Mn and N.  

Schematic diagram for adsorbing method to introduce more Mn ions into the 
pore of Manganese-nitrogen doped carbon (Mn-NC)  

Two Step Approach to Introduce More Mn Ions 
Technical Accomplishment 



 Using Mn-NC derived from Mn-doped ZIF as precursors, the 
performance shows a significant enhancement after the 
secondary adsorption step, indicating that the adsorption 
method is efficient to introduce more active sites. 

 Pre-doping content of Mn during the step 1 was found critical 
for catalyst performance after step 2 adsorption; 20 wt. % Mn 
precursor exhibit the best activity close to a half-wave potential 
of 0.80 V.  

Step 1 Step 2 

RDE Activity for ORR during Synthesis Steps  

Electrolyte: 0.5 M H2SO4, 25 oC, 900 rpm, catalyst loading: 0.8 mg/cm2 

Comparison: Fe, Co, and Mn 
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Technical Accomplishment 



 N-doping and micropores are crucial for step 2 adsorption             
with enhanced activity. 

 Acid leaching after step 1 doping doesn’t change the activity,             
it’s essential for step 2. 

 The best performance was obtained from cyanamide as nitrogen 
source due to its smaller geometry and/or C≡N structures  

Effect of Carbon /Acid Leaching/Nitrogen Precursors 
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Technical Accomplishment 

Effect of carbon support Effect of acid leaching Effect of nitrogen precursors 



 With stable Mn-Nx active sites and corrosion-resistant  structure, Mn-NC 
catalyst showed enhanced stability compared to Fe-NC . 

RDE Constant and Cycling Potential Stability 
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Constant E at 0.7 V Constant E at 0.8 V* ORR polarization plots  Potential cycling: 0.6-1.0 V, 30 k  

Technical Accomplishment 

Mostly Met Milestone 2-3: achieve E½ > 0.81 V and generate  0.25 mA/cm2 
at 0.90 V and stability: ∆E½ < 30 mV after 30,000 potential cycling 

* After each 20 hours test, potential cycling from 0 to 1.0 V about 10 cycles was performed to refresh the electrode. Partial activity is 
recovered due to possible adsorption oxygen functional groups on active sites. 



 Atomically dispersed Mn-N sites were observed by EELS, and Mn signals 
become much stronger after adsorption 

Structures and Morphologies During Synthesis  
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Technical Accomplishment 



Structures and morphologies during  Synthesis 
and Stability Test 

 Homogeneous polyhedron carbon particles with abundant micropores appeared on surface. 
 Microstructures exhibited excellent carbon corrosion resistance during the potential cycling.  
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Technical Accomplishment 



MEA Performance- Synthesis Route Impact 

Anode: 0.25 mgPt cm-2 Pt/C H2, 200 sccm, 1.0 bar H2 partial pressure; Cathode: ca. 4.0 mg cm-2 O2, 
200 sccm, 1.0 bar O2 partial pressure; Membrane:  Nafion,212; Cell: 80°C, 100%RH 

 Performance ranking:  DMF synthesis > Water synthesis >  Polyaniline hydrogen synthesis 
 Benefits of using MOF to produce highly active Mn-N-C catalysts for ORR, likely due to  their 

well-defined structure, high surface area and porous structure. 

Technical Accomplishment 
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15 mA/cm2 @ 0.9 V 

Met Year 1 GO/NO GO decision point: 10 mA/cm2 @ 0.9 V   



Anode: 0.25 mgPt cm-2 Pt/C H2, 200 sccm, 1.0 bar H2 partial pressure; Cathode: ca. 4.0 mg cm-2 O2 or air, 200 sccm, 1.0 bar O2 or air partial 
pressure; Membrane:  Nafion,212; Cell: 80°C, 100%RH 

 Performance ranking:  Two–step from DMF > One step adsorption > from Water synthesis:  
      - Two step introduced more Mn active sites 
      - Consistent with RDE results 
 Still Big gap from Fe-Based Catalyst 
     - Catalyst activity improvement needed 
     - MEA design to maximize the utilization of active sites 
  

Technical Accomplishment 
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MEA Performance- Synthesis Route Impact 

H2/O2 H2/air 

Fe Catalyst  
Status 



MEA #7-4: UB-Mn-ZIF-8-ZQ (one step adsorb method) catalyst 

Electrode Structure: HAADF-STEM Image 

 Agglomerated ZIF particles observed in catalyst layer with little ionomer infiltration  
 F map shows lack of ionomer within ZIF agglomerates 
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Summary 
 Completed the first-principles DFT calculations to predict nine types of 

possible active sites in the Mn catalysts 
- Optimized atomic structural configurations 
- Stable adsorption of O2, OOH, O, OH and H2O  
- Free energy evolution for four-electron  
- Activation energy for the ORR elementary steps 
 

 Change in Mn-MOF catalyst synthesis led to significantly improved 
catalyst activity and durability in RDE studies 
- Importance of carbon precursors for adsorption  
- Importance of post treatment for adsorption 
- Effect of secondary nitrogen precursors  
- Role of pre-doped Mn in the first step 
 

 MEA evaluation validated RDE results and performance, and 
performance depended on electrode fabrication and approach  
- Ink preparation and electrode fabrication impacts electrode microstructures  
- MEA conditioning can lead to catalyst structuring  
- Inefficient ionomer interaction without catalyst observed by TEM 
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Future Work  
 Catalyst Modeling  

    - Catalyst: To achieve high activity and durability simultaneously  
    - Electrode: Structure affects MEA performance 
 

 Further improve catalyst synthesis  

    - Increase effective Mn doping (current Mn content is low ~ 0.1 at%) 
    - Improve catalyst synthesis reproducibility  
    - Scale up catalyst synthesis 
 

 Optimize electrode and MEA design  

     - Ink preparation  
     - Ionomer effect  
     - New electrode design(e.g., Ionomer -less or -free electrode design) 
     - Thick electrode transport studies (O2 and water) 
 

 Electrode in-situ and ex-situ characterizations 
   

 - To correlate electrode microstructures with performance  
Any proposed future work is subject to change based on funding levels 



Team Collaborations/Project Management  
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Institutions Roles 

Giner Inc. (Giner) 
Hui Xu (PI), Chao Lei, Jason Willey 

Prime, oversees the project; MEA 
design and fabrication; performance 
and durability tests;  cost analysis 

SUNY -Buffalo(SUNY) 
Gang Wu 

Mn-based non-PGM catalyst 
synthesis; RDE screening; MEA test 

University of Pittsburgh (UP) 
Guofeng Wang 

Catalyst and electrode modeling 
using DFT; molecular dynamics and  
pore network   

General Motors Companies (GM) 
Anusorn Kongkanand 

MEA optimization; fuel cell system 
integration and cost analysis 

 Biweekly meeting  
 Biannual visit  

 Quarterly report/project review 
 Meeting with ElectroCat Consortium 



Collaboration with  
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