

2018 DOE H₂ and Fuel Cell Annual Merit Review Meeting

ElectroCat: Durable Mn-based PGM-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells

Hui Xu (PI) Giner Inc. Newton, MA

Subcontractors: SUNY-Buffalo, Univ. Pittsburgh, and GM

June 13, 2018

Project # FC170

1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

Project Start Date: Oct 1, 2017
Project End Date: Sept 30, 2020

Budget

- Total \$2.49 million
 - DOE share \$1.99 million and cost sharing \$500, 744
 - Spent \$ 239, 075 (by 4/30/2018)

Giner Personnel

Chao Lei and Magali Spinetta

Collaborators

- SUNY-Buffalo: Prof. Gang Wu
- U. of Pitts.: Prof. Guofeng Wang
- GM: Dr. Anusorn Kongkanand

Barriers Addressed

- Durability (catalyst; MEA)
- Cost (catalyst; MEA)

Technical Targets

- Design Mn-based PGM-free catalysts to meet DOE catalyst activity >0.044 A/cm2 @ 0.9 V_{IR-free} in a MEA test
- The catalyst extends the durability by 50% (compared to state-of-theart PGM-free catalyst)
- The catalyst mitigates membrane degradation caused by Fe-based catalysts by 50%

Relevance

Table 3.4.7 Technical Targets: Electrocatalysts for Transportation Applications						
Characteristic	Units	2015 Status	2020 Targets			
Platinum group metal total content (both electrodes) ^a	g / kW (rated, ^b gross) @ 150 kPa (abs)	0.16 ^{c,d}	0.125			
Platinum group metal (pgm) total loading (both electrodes) [®]	mg PGM / cm ² electrode area	0.13 ^c	0.125			
Mass activity®	A / mg PGM @ 900 mV _{R.tree}	>0.5 ^f	0.44			
Loss in initial catalytic activity [®]	% mass activity loss	66 ^c	<40			
Loss in performance at 0.8 A/cm ^{2,0}	mV	13 ^c	<30			
Electrocatalyst support stability ⁹	% mass activity loss	41 ^h	<40			
Loss in performance at 1.5 A/cm ^{2.9}	mV	65 ^h	<30			
PGM-free catalyst activity	A / cm 2 @ 0.9 $V_{\rm IR,tree}$	0.016	>0.044 ^j			

PEMFC Stack Cost Breakdown*

ard EC gen®-1040 prototype, fuel cell s

Ballard FCgen®-1040 prototype fuel cell stack, with Non Precious Metal Catalysts

- Catalyst cost still a major contributor to high fuel cell price
- □ Pt price volatility and supply shortage with mass production of fuel cells
- Development of non-PGM catalyst can likely resolve the issues

Motivation

PGM Catalyst

- High cost
- Scarcity
- Catalyst poisoning

□ Fe Based PGM-free Catalyst

- Insufficient stability
- Membrane degradation

- MEA Design: Reducing PEM degradation

Technical Approach

A strong team was formed to transform the discovery of Mn-based catalyst into fuel cell application with expertise in the following areas:

- Catalyst modeling
- Catalyst synthesis
- MEA fabrication
- □ Fuel cell system integration

Tasks, Milestones, and Performance Period

	Year 1				Year 2				Year 3	
Task Name	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10Q11
Task. 1. Computation for Accelerating Mn-based Catalysts Development (Pitt and SUNY)		-	_	-		_				-
Subtask 1.1. Activity Prediction	_	-	-							
Subtask 1.2. Durability Prediction				-		_				
Subtask 1.3. Modeling Transportation in MEA.									_	-
Task 2. Synthesis of Highly Active and Stable Mn Catalysts (UB and Giner).			_			_				-
Subtask 2.1. Optimize morpholog through tuning carbon/nitrogen precursors.	-	-	-							
Subtask 2.2. Optimize Mn content during the synthesis to maximize the atomic sites.			-	-		-				
Subtask 2.3. Engineer catalyst properties by controlling thermal activation conditions.						_		-		
Subtask 2.4. Catalysts stability enhancement and evaluation.					-	_			_	-
Task 3. Fabricate MEAs and Evaluate Initial Performance (Giner, SUNY, and GM)				-						
Subtask 3.1. Fabricate MEAs Using optimized Mn catalysts.				_		_				
Subtask 3.2. Evaluate Initial Performance of MEAs.						_			_	•
Subtask 3.3. Characterize Microstructure of Fresh MEAs.						-			-	
Task 4. Evaluate MEA Durability Using Different Approaches (Giner, SUNY, and GM)							-			
Subtask 4.1. Evaluate MEA Durability Using DOE AST Protocols							_			
Subtask 4.2. Evaluate MEA Durability in 1000 hour Fuel Cell Tests.								-	-	
Subtask 4.3. Characterize MEA Structure after Durability Tests.										
Task 5: Perform Catalyst Cost Analysis and System Economics (Giner and GM)										
Project Management										

Task	Task/subtask Titles	Milestone	Numbe r	Milestone Description	Milestone Verification Process	Month	Quarter	Comp letion
1	Computation of Mn-based catalysts and cathodes	Milestone	M1-1	Identify 2 key descriptors for modeling catalyst activity and durability	At UP, provide detailed key descriptors	M3	Ql	100%
1	Computation of Mn-based catalysts and cathodes	Milestone	M1-2	Predict 6 planar and non-planar Mn- containing active sites	At UP, provide detailed predictions and computational procedures	M6	Q3	100%
1	Computation of Mn-based catalysts and cathodes	Milestone	M1-3	Predict active sites with highest stability and 4e ⁻ ORR	At UP, provide detailed predictions and analysis results	M15	Q 5	50%
2	Synthesize and screen Highly Active and Stable Mn Catalysts	Milestone	M2-1	Produce 1.0 g of Mn based catalyst	At SUNY, using a small batch reactor	M3	Ql	100%
2	Synthesize and screen Highly Active and Stable Mn Catalysts	Milestone	M2-2	Scale up hydrogel method and prepare > 5.0 g catalysts	At SUNY and Giner	M6	Q2	50%
2	Synthesize and screen Highly Active and Stable Mn Catalysts	Milestone	M2-3	Achieve E ¹ / ₂ > 0.81 V and generate 0.25 mA/cm ² at 0.90 V and stability: ΔE ¹ / ₂ < 30 mV after 30,000 potential cycling	At SUNY, using RDE steady- state polarization; potential cycling (0.6 to 1.0 V, 50 mV/s) in O ₂ saturated 0.5 M H ₂ SO ₄	M12	Q4	90%
3	Fabricate MEAs and Evaluate Initial Performance	Milestone	M3-1	Identify 2 key parameters for MEA performance at low current density	At Giner and SUNY, including electrode fabrication approaches.	M9	Q3	90%
3	Fabricate MEAs and Evaluate Initial Performance	Go/No-Go decision	M3-2	For a PGM-free &Fe-free catalyst, dcmonstrate $\geq 10 \text{ mA/cm}^2$ at 0.90 V (iR-corrected) in an H ₂ -O ₂ ; maintain partial pressure of O ₂ at 1.0 bar (cell temperature 80 °C).	At Giner and SUNY, using DOE PGM-free catalyst testing protocols for MEAs	M12	Q4	50%
3	Fabricate MEAs and Evaluate Initial Performance	Milestone	M3-3	Identify 2 key parameters for MEA performance at high current density	At Giner, including electrode fabrication approach, ionomer content and category	M18	Q6	20%

All the milestones are on track!

Model of Nine Possible Active Sites

Met Milestone 1-2: Predict 6 planar and non-planar Mn-containing active sites

Modeling Results

Met Milestone 1-1: Identify 2 key descriptors for modeling catalyst activity and durability

Two Step Approach to Introduce More Mn Ions

Schematic diagram for adsorbing method to introduce more Mn ions into the pore of Manganese-nitrogen doped carbon (Mn-NC)

- □ Unfavorable for Mn ions to replace original Zn, previous one-step chemical doping method is not efficient (E_{1/2}= 0.7 V).
- □ Mn-NC possesses abundant micropores doped with N, which enables the adsorption of additional Mn and N.

RDE Activity for ORR during Synthesis Steps

of 0.80 V.

Effect of Carbon /Acid Leaching/Nitrogen Precursors

- N-doping and micropores are crucial for step 2 adsorption with enhanced activity.
- Acid leaching after step 1 doping doesn't change the activity, it's essential for step 2.
- □ The best performance was obtained from cyanamide as nitrogen source due to its smaller geometry and/or C≡N structures

RDE Constant and Cycling Potential Stability

* After each 20 hours test, potential cycling from 0 to 1.0 V about 10 cycles was performed to refresh the electrode. Partial activity is recovered due to possible adsorption oxygen functional groups on active sites.

With stable $Mn-N_x$ active sites and corrosion-resistant structure, Mn-NC catalyst showed enhanced stability compared to Fe-NC .

Mostly Met Milestone 2-3: achieve $E\frac{1}{2} > 0.81$ V and generate 0.25 mA/cm² at 0.90 V and stability: $\Delta E\frac{1}{2} < 30$ mV after 30,000 potential cycling

Structures and Morphologies During Synthesis

CAK RIDGE National Laboratory

Atomically dispersed Mn-N sites were observed by EELS, and Mn signals become much stronger after adsorption

Structures and morphologies during Synthesis

and Stability Test

Homogeneous polyhedron carbon particles with abundant micropores appeared on surface.
Microstructures exhibited excellent carbon corrosion resistance during the potential cycling.

MEA Performance- Synthesis Route Impact

Anode: 0.25 mg_{Pt} cm⁻² Pt/C H₂, 200 sccm, **1.0 bar** H₂ partial pressure; **Cathode:** *ca.* 4.0 mg cm⁻² O₂, 200 sccm, **1.0 bar** O₂ partial pressure; **Membrane:** Nafion[®]·212; Cell: 80°C, 100%RH

Performance ranking: DMF synthesis > Water synthesis > Polyaniline hydrogen synthesis
Benefits of using MOF to produce highly active Mn-N-C catalysts for ORR, likely due to their well-defined structure, high surface area and porous structure.

Met Year 1 GO/NO GO decision point: 10 mA/cm² @ 0.9 V

MEA Performance- Synthesis Route Impact

Anode: 0.25 mg_{Pt} cm⁻² Pt/C H₂, 200 sccm, 1.0 bar H₂ partial pressure; Cathode: ca. 4.0 mg cm⁻² O₂ or air, 200 sccm, 1.0 bar O₂ or air partial pressure; Membrane: Nafion^{®,}212; Cell: 80°C, 100%RH

- □ Performance ranking: Two-step from DMF > One step adsorption > from Water synthesis:
 - Two step introduced more Mn active sites
 - Consistent with RDE results
- □ Still Big gap from Fe-Based Catalyst
 - Catalyst activity improvement needed
 - MEA design to maximize the utilization of active sites

Electrode Structure: HAADF-STEM Image

MEA #7-4: UB-Mn-ZIF-8-ZQ (one step adsorb method) catalyst

Agglomerated ZIF particles observed in catalyst layer with little ionomer infiltration
F map shows lack of ionomer within ZIF agglomerates

Summary

Completed the first-principles DFT calculations to predict nine types of possible active sites in the Mn catalysts

- Optimized atomic structural configurations
- Stable adsorption of O_2 , OOH, O, OH and H_2O
- Free energy evolution for four-electron
- Activation energy for the ORR elementary steps

Change in Mn-MOF catalyst synthesis led to significantly improved catalyst activity and durability in RDE studies

- Importance of carbon precursors for adsorption
- Importance of post treatment for adsorption
- Effect of secondary nitrogen precursors
- Role of pre-doped Mn in the first step

□ MEA evaluation validated RDE results and performance, and performance depended on electrode fabrication and approach

- Ink preparation and electrode fabrication impacts electrode microstructures
- MEA conditioning can lead to catalyst structuring
- Inefficient ionomer interaction without catalyst observed by TEM

Future Work

Catalyst Modeling

- Catalyst: To achieve high activity and durability simultaneously
- Electrode: Structure affects MEA performance

□ Further improve catalyst synthesis

- Increase effective Mn doping (current Mn content is low ~ 0.1 at%)
- Improve catalyst synthesis reproducibility
- Scale up catalyst synthesis

Optimize electrode and MEA design

- Ink preparation
- Ionomer effect
- New electrode design(e.g., lonomer -less or -free electrode design)
- Thick electrode transport studies (O₂ and water)

□ Electrode in-situ and ex-situ characterizations

- To correlate electrode microstructures with performance

Any proposed future work is subject to change based on funding levels

Team Collaborations/Project Management

Institutions	Roles					
<u>Giner Inc. (Giner)</u> Hui Xu (PI), Chao Lei, Jason Willey	Prime, oversees the project; MEA design and fabrication; performance and durability tests; cost analysis					
<u>SUNY -Buffalo(SUNY)</u> Gang Wu	Mn-based non-PGM catalyst synthesis; RDE screening; MEA test					
<u>University of Pittsburgh (UP)</u> Guofeng Wang	Catalyst and electrode modeling using DFT; molecular dynamics and pore network					
<u>General Motors Companies (GM)</u> Anusorn Kongkanand	MEA optimization; fuel cell system integration and cost analysis					

Quarterly report/project review
Meeting with ElectroCat Consortium

Collaboration with

Priority order	Lab	Description
1	ORNL	High resolution TEM and STEM, for catalyst, electrode and MEA before and after durability tests. In-situ TEM to observe MEA under operating conditions
2	ANL	Ex-situ X-ray absorption spectroscopy (XAS) to determine Mn-related active sites; X-ray tomography to study Nano- and micro-structure of materials and cell layers; in-operando electrochemical XAS as a function of potential and potential cycling in an aqueous electrolyte and in a MEA
3	LANL	MEA design and fabrication to maximize the fuel cell initial performance and durability, which include: (i) catalyst ink optimization, (ii) catalyst layer deposition
4	ORNL	High angle annular dark field (HAADF) STEM tomography to elucidate the interaction between catalyst and ionomer.
5	NREL	Operando differential cell measurements of electrochemical kinetics and transport, providing insight into the reaction mechanisms and transport resistance measurements

Acknowledgments

- Financial support from DOE FCTO Fuel Cell Program under award # DE-EE0008075
- Program Manager
 - Dr. Nancy Garland
- ElectroCat Consortium
 - Drs. Piotr Zelenay, Debbie Myers, Karren More and K.C. Neyerlin
- Collaborators
 - Dr. Guofeng Wang (UP)
 - Dr. Gang Wu (UB)
 - Dr. Anusorn Kongkanand (GM)
- Giner Personnel
 - Drs. Chao Lei, Shuai Zhao and Cortney Mittelsteadt