Project ID: fc172

Highly Active and Durable PGM-free ORR Electrocatalysts through the Synergy of Active Sites

Yuyan Shao

Pacific Northwest National Laboratory 06/13/2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/01/17
- Project End Date: 09/30/20*

*Project continuation and direction determined annually by DOE

Budget

- Total Project Budget: \$2,223,776
 - Total Recipient Share: \$223,776
 - Total Federal Share: \$2,000,000
 - Total DOE Funds Spent*: \$211,249
 - * As of 04/06/18

Barriers

- Barriers addressed
 - Cost (catalyst)
 - Activity (catalyst; MEA)
 - Durability (catalyst; MEA)

Partners

- Washington Univ. in St. Louis
- Univ. of Maryland, College Park
- Ballard Power Systems Inc.
- ElectroCat
- Project lead: PNNL

Relevance

Objective: Improve the activity and durability of PGM-free oxygen reduction reaction (ORR) catalysts through dual active sites for enhanced O_2 reduction and H_2O_2 decomposition.

Approach

Material and synthesis innovation

Thermal shock activation for high activity by increasing active site density.

Approach

Milestone	Milestone Description (Go/No-Go Decision)	Complete
M3.1	Identify at least two stable H_2O_2 decomposers (01/31/18)	100%
M1.1	Identify pathways to produce 200mg catalysts using thermal shock activation technique (04/30/18)	50%
M2.1	Identify at least two O ₂ reduction catalysts with $\Delta E_{1/2} < 65$ mV (vs. Pt/C) under RRDE test (07/31/18)	100%
M3.2	Identify dual-site catalysts with H_2O_2 generation comparable to Pt/C (4%) under RRDE test (10/31/18)	100%
GNG1	Demonstrate a PGM-free catalyst $\ge 20 \text{ mA/cm}^2$ at 0.90 V (iR-corrected) in an H ₂ -O ₂ fuel cell and 100 mA/cm ² at 0.80 V in an H ₂ -air fuel cell (measured); maintain partial pressure of O ₂ + N ₂ at 1.0 bar (cell temperature 80 °C). (10/31/18)	20%
M2.2	Identify O ₂ reduction catalysts with $\Delta E_{1/2}$ < 50mV (vs. Pt/C) under RRDE test (01/31/19)	Started
M1.2	Identify pathways to produce 20g catalysts using thermal shock activation technique (07/31/19)	
M3.3	Identify dual-site catalysts with $\Delta E_{1/2}$ < 45 mV (vs. Pt/C) under RRDE test (07/31/19)	
GNG2	Demonstrate a PGM-free catalyst $\ge 25 \text{ mA/cm}^2$ at 0.90 V (iR-corrected) in an H ₂ -O ₂ fuel cell and 125 mA/cm ² at 0.80 V in an H ₂ -air fuel cell (measured); maintain partial pressure of O ₂ + N ₂ at 1.0 bar (cell temperature 80 °C). (10/31/19)	
M3.4	Identify dual-site catalysts with H_2O_2 generation less than half of Pt/C (2%) under RRDE test (01/31/20)	
M4.3	Demonstrate MEA 2X durability of dual-site catalysts over baseline (04/30/20)	
GNG3 Any proposed	Demonstrate a PGM-free catalyst \geq 30 mA/cm ² at 0.90 V (iR-corrected) in an H ₂ -O ₂ fuel cell and 150 mA/cm ² at 0.80 V in an H ₂ -air fuel cell (measured); maintain partial pressure of O ₂ + N ₂ at 1.0 bar (cell temperature 80 °C). Provide six 50cm ² MEAs to DOE while showing a reasonable pathway to achieve DOE performance and durability targets. (10/31/20) d future work is subject to change based on funding levels.	

Atomically dispersed Fe catalysts

Metal exchange and ligand exchange successful; Porous structure for good mass transport; micropores need improvement for active sites. Any proposed future work is subject to change based on funding levels.

6

Atomically dispersed Fe catalysts

STEM and XANES confirm atomic dispersion of metal, Fe in Fe-N₄ structure.

Atomically dispersed Fe catalysts

- 1. Most Fe and Zn are associated with the graphitic basal plane edges;
- Fe are highly mobile under electron beam most likely because they are not strongly bonded to carbon. The underlying reasons are under investigation.
 Any proposed future work is subject to change based on funding levels.

Atomically dispersed Fe catalysts

Ex situ RRDE

MEA (1st try)

- 1. Atomically dispersed Fe catalyst performance meets the milestone $(\Delta E_{1/2} < 65 \text{mV vs Pt}).$
- 2. MEA performance needs improvement (both H_2/O_2 and H_2/Air).

Two catalysts with $E_{1/2}$ no less than 0.80V

M2.1 Identify at least two O₂ reduction catalysts with $\Delta E_{1/2} < 65 \text{mV}$ (vs. Pt/C) under RRDE test

Dual active site catalysts – Non-stoichiometric H₂O₂ decomposer

N-doping promotes more non-stoichiometricity (Ce³⁺) \rightarrow oxygen vacancies \rightarrow more peroxide scavenging ability \rightarrow higher stability of PGM-free catalysts

Dual active site catalysts – H_2O_2 decomposer N-CeO_x, N-TaTiO_x

 N-CeO_{x} , N-TaTiO_{x} catalyst characterization underway

Radical scavengers N-CeO_x and N-TaTiO_x significantly decrease H_2O_2 formation.

M3.1 Identify at least two stable H₂O₂ decomposers

In situ CO₂ emission: N-CeO_x effect and degradation mechanisms

Developed two dual active site catalysts (w/ N-TaTiO_x)

Fe catalyst + N-TaTiO_x

Co catalyst + N-TaTi O_x

M3.2 Identify dual-site catalysts with H_2O_2 generation comparable to Pt/C (4%) under RRDE test (10/31/18)

Dual active site catalysts - durability improvement

Baseline

W/ N-CeOx

Stability test protocol: potential steps between 0.6 V (3 s) and 0.95 V (3 s) with rise time of ~1 s in O_2 saturated 0.5M H_2SO_4 .

Dual active site catalysts improve durability.

Any proposed future work is subject to change based on funding levels.

W/ N-TaTiOx

Thermal shock activation synthesis

Highly porous structure; Performance needs improvement. 16

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

This is a new-start project and was not reviewed last year.

Collaboration & Coordination

Partner	Project roles
PNNL – Lead (Y. Shao, V. Prabhakaran, J. Liu, X. Xie)	Project lead, management and coordination; catalysts design, development and characterization, H_2O_2 decomposer development and integration.
Univ. Maryland(L. Hu)	Synthesis protocol – thermal shock activation, catalyst synthesis
WashU (V. Ramani)	Electrode design and MEA assembly, MEA test and analysis
Ballard (D. Banham)	MEA design, test and analysis

ElectroCat Capabilities

ANL	<i>In situ</i> and Operando Atomic, Nano-, and Micro-structure Characterization (X-ray adsorption, including <i>ex-situ, in-situ</i> in liquid/MEA) Electrode Microstructure Characterization and Simulation (X-ray Nano CT)
LANL	<i>In situ</i> fluoride and carbon dioxide emission measurements (including F/metal/CO ₂ detection simultaneously)
NREL	Kinetics and Transport (Operando differential cell measurements of electrochemical kinetics and transport)
ORNL	Electron microscopy

Remaining Challenges and Barriers

- Demonstrate thermal shock activation synthesis for improved catalyst performance.
- Catalyst degradation mechanisms.
- Improve synergy of dual active sites.
- Catalyst performance and catalyst scale-up synthesis for MEA engineering and test (50cm²).
- MEA engineering for performance improvement in both H_2/O_2 and H_2/Air .

Proposed Future Work

- Optimize and develop alternative thermal shock activation (e.g., microwave) for improved synthesis at relevant scale.
- Understand catalyst degradation under various conditions through collaboration with ElectroCat (CO₂ emission, metal leaching, metal-nitrogen coordination, etc.).
- Improve catalyst performance through chemistry, structure, morphology innovation (MOF precursors, nanowires, etc.).
- Molecular level integration of dual active sites for enhanced synergy between ORR and H₂O₂ decomposition.
- Enhance MEA performance through electrode engineering, specifically by optimizing the loading and distribution of ionomer.
- MEA diagnostics to evaluate sources and distribution of polarization with the MEAs.

Technology Transfer Activities

 An invention report filed "Dual-site PGM-free cathodes for proton exchange membrane fuel cells technology" (IPID=31334-E).

Summary Slide

- Two PGM-free catalysts including one Co-based catalyst have been developed with E_{1/2}=0.80V, meeting project milestone (M2.1).
- Two H₂O₂ decomposers have been developed and successfully integrated into ORR catalysts and reduced the formation of H₂O₂ below 2.1%, meeting project milestones (M3.1, M3.2).
- Collaboration with ElectroCat helped deep understand our catalysts (chemistry, degradation mechanisms).
- Need improvement on new synthesis (thermal shock activation) and MEA performance.

Technical Back-Up Slides

Technical Back-Up

Comparison of Cyclic Voltammograms at EOL

Anode: 0.2 mg_{Pt} cm⁻² Pt/C H₂, 200 sccm; Cathode: *ca.* 3 mg cm⁻², N₂, 500 sccm; Membrane: Nafion^{®,}212; Cell: 80°C; 100% RH. Cyclic voltammogram: 20 mV/s at EOL.

