

Spirocyclic Anion Exchange Membranes for Improved Performance and Durability

Bryan Pivovar National Renewable Energy Laboratory June 13, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID: FC178

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 01/01/18
- Project end date: 09/30/19
- Total project budget: \$150k with additional \$150K possible
 - Total recipient share: \$0K
 - Total federal share: \$150K
 - Total DOE funds spent*: \$20K

Barriers

- Cost
- Performance
- Durability

Partners

- NREL only project
- Multiple interactions across AEM space, leverage significant effort at NREL on related projects

Relevance/Impact DOE (Preliminary) Milestones for AMFCs*

- Q2, 2017: Develop anion-exchange membranes with an area specific resistance ≤ 0.1 ohm cm², maintained for 500 hours during testing at 600 mA/cm² at T > 60 °C.
- **Q4, 2017:** Demonstrate alkaline membrane fuel cell peak power performance > 600 mW/cm² on H_2/O_2 (maximum pressure of 1.5 atma) in MEA with a total loading of $\leq 0.125 \text{ mg}_{PGM}/\text{cm}^2$.
- Q2, 2019: Demonstrate alkaline membrane fuel cell initial performance of 0.6 V at 600 mA/cm² on H₂/air (maximum pressure of 1.5 atma) in MEA a total loading of < 0.1 mg_{PGM}/cm², and less than 10% voltage degradation over 2,000 hour hold test at 600 mA/cm² at T > 60 °C. Cell may be reconditioned during test to remove recoverable performance losses.
- Q2, 2020: Develop non-PGM catalysts demonstrating alkaline membrane fuel cell peak power performance > 600 mW/cm² under hydrogen/air (maximum pressure of 1.5 atma) in PGM-free MEA.

Impact/Team Project Goals

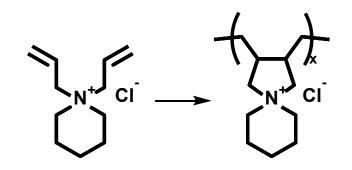
Novel Synthesis - Improve novel perfluoro (PF) anion exchange membrane (AEM) properties and stability.

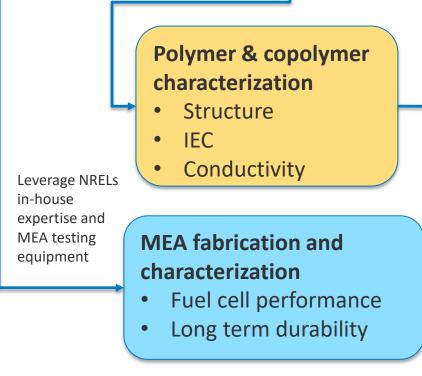
Fuel Cell Optimization - Employ high performance PF AEM materials in electrodes and as membranes in alkaline membrane fuel cells (AMFCs).
 Model Development - Apply models to AMFCs to determine and minimize losses (water management, electrocatalysis, and carbonate related).

Relevance/Objectives

Alkaline exchange membranes continue to be challenged with cation degradation at high temperature and pH conditions

- State of the art trimethyl ammonium cations exhibit limited durability under fuel cell operating condition
- Research has indicated that cations with a spirocyclic structure have improved durability
 - Higher activation energy for both Hoffman elimination and substitution degradation mechanisms
- Incorporation of spirocyclic ammonium cations into alkaline exchange membranes to improve durability


Quaternary Ammonium	Abbreviation	Half-life [hr]
	ASU	110
\mathbf{N}^{+}	DMP	87.3
$\langle \mathbf{N} \rangle$	DMPy	37.1
	ASN	28.4
N [™]	BTMA	4.18


Marino, M. G.; Kreuer, K. D., Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids. *ChemSusChem* **2015**, *8* (3), 513-523.

Approach

Synthesis

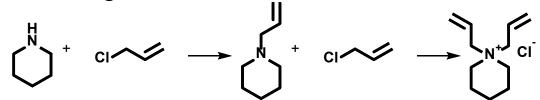
- Diallyl monomers undergo ring closing radical polymerization
- Polymerization of diallypiperidinium chloride produces polymer of ASU/ASN hybrid structures

D. Strasser, PhD Thesis, Colorado School of Mines

Accelerated aging

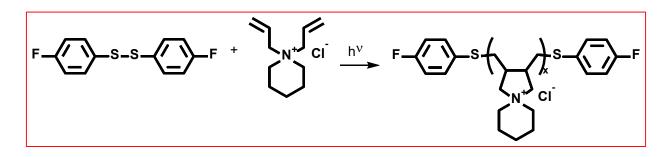
- Polymer & AEM durability
- Degradation pathways and rates
- Previous work generated multiblock copolymers of polydiallylpiperidinium segments in a high performance polysulfone backbone
- Current synthesis focuses on scaling synthetic procedure for production of larger (>20 g) batches
 - Provide ample material for complete MEA characterization and durability studies

Approach - Milestones


Milestone Name/Description	End Date	Туре
Produce sufficient materials (> 20 g) to accomplish degradation evaluation of both the homopolymer and mulitblock copolymer membrane.	12/31/2017	Progress Measure
Quantify poly(polydiallylpiperidinium hydroxide) degradation rates using temperature as an accelerating factor up to 160 °C.	3/31/2018	Progress Measure
Demonstrate membrane ASR $\leq 0.02 \Omega$ in fuel cell tests.	6/30/2018	Progress Measure
Demonstrate AEM fuel cell initial performance of 0.6 V at 600 mA/cm ² on H_2 /air (maximum pressure of 1.5 atma) in MEA, and less than 10% voltage degradation over 1,000 hour hold test at 600 mA/cm ² at T>60 °C.	9/30/2018	Annual Milestone

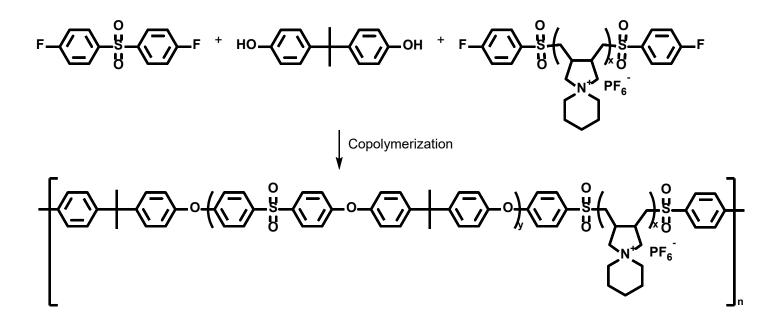
Go/No-Go Description	Criteria	End Date
AEMFC Durability	In alignment with DOE 2019, Q2 AEM target, demonstrate AEM fuel cell initial performance of 0.6 V at 600 mA/cm ² on H ₂ /air (maximum pressure of 1.5 atma) in MEA, and less than 10% voltage degradation over 1,000 hour hold test at 600 mA/cm ² at T>60 °C.	9/30/2018

Synthesis

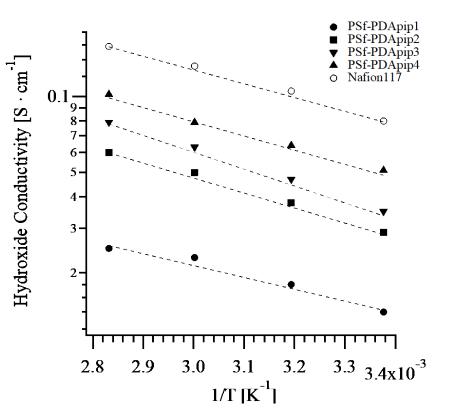

Monomer

- Two step process completed in 4-5 days
- Easily produce > 100 g batches

Poly(diallylpiperidinium chloride) (PDApip)

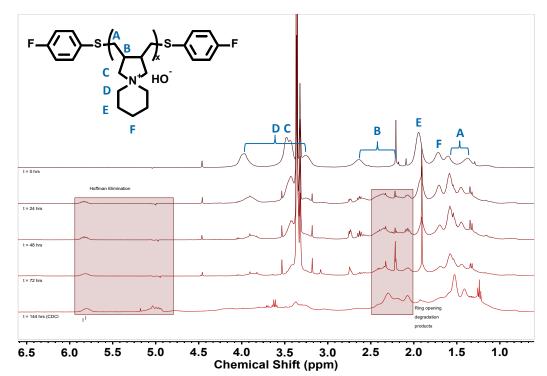

- 24 hr. photopolymerization
- Small batch (≈ 5 g) 50 % recovery
- Larger batch (30-40 g) 15 % recovery
- bottleneck for larger scale copolymerization

Synthesis

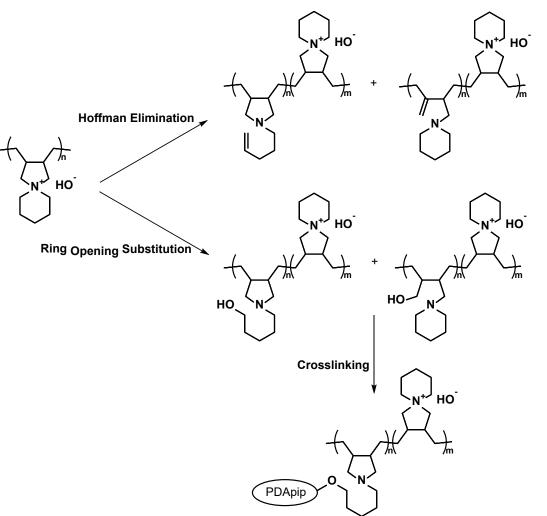

Polysulfone-PDApip multiblock copolymers

- A single 16 g batch has been copolymerization completed
- Copolymerization had low viscosity indicating low molecular weight
- ¹H NMR estimation of PDApip end group concentration was insufficient
 - Indicates the presence of non-functional end groups

Polymer & Copolymer characterization


- Previous work has shown the Polysulfone-PDApip multiblock copolymer membranes to efficiently conduct hydroxide
- The activation energy for hydroxide conduction was very similar to Nafion117
- Hydroxide conductivity was able to reach 102 mS/cm² at 80 °C

Strasser, D. J.; Graziano, B. J.; Knauss, D. M., Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes. *Journal of Materials Chemistry A* **2017**, *5* (20), 9627-9640.


Polymer Durability

- Previous investigation of the PDApip durability indicated negligible degradation, by ¹H NMR, over 1000 hours at 80 °C in a 1M KOH/Methanol-d₄ solution
- Current durability studies adapt NRELs established accelerated aging conditions
- PDApip aged at 140 °C for 144 hours in 2:1 MeOH/2M KOH
- Hoffman elimination and ring opening degradation was observed over 144 hours

Degradation Pathways

- After 144 hours some insoluble material was left behind in the reactor
- Insolubility indicates crosslinking resulting from ring opening attack of hydroxyl degradation products

Remaining Challenges and Barriers

Synthesis

- Large scale PDApip synthesis has poor yield
 - Limits the copolymerization scale

Accelerated aging characterization

- ¹H NMR unable to quantitatively assess the amount of degradation in PDApip polymers
 - Developing titration analytical method

Proposed Future Work

Synthesis

- Continue to work on the scale up of the PDApip polymerization

 improve conversion
- Generate ~ 10 15 g batches of PDApip
- Produce ~ 20 g batches of Polysulfone-PDApip copolymer

Polymer and copolymer characterization

- Molecular weight analysis of produced PDApip polymers
- UV characterization of end groups improve copolymerization
- Confirm IEC and measure ionic conductivity of Polysulfone-PDApip membranes

Accelerated aging

• Continue accelerated aging experiments to further elucidate the rate of degradation and major degradation pathways

MEA fabrication and characterization

- Fabricate MEAs and optimize fuel cell test conditions
- Conduct long term durability study with Polysulfone-PDApip materials

Any proposed future work is subject to change based on funding levels

Summary

Milestone Name/Description	End Date	Туре	Progress
Produce sufficient materials (> 20 g) to accomplish degradation evaluation of both the homopolymer and mulitblock copolymer membrane.	12/31/2017	Progress Measure	Can produce > 15 g batches of multiblock membrane material
Quantify poly(polydiallylpiperidinium hydroxide) degradation rates using temperature as an accelerating factor up to 160 °C.	3/31/2018	Progress Measure	 Shown accelerated degradation and pathways Need rates of degradation Further elucidation of pathways
Demonstrate membrane ASR ≤0.02 Ω in fuel cell tests.	6/30/2018	Progress Measure	Not started
Demonstrate AEM fuel cell initial performance of 0.6 V at 600 mA/cm ² on H ₂ /air (maximum pressure of 1.5 atma) in MEA, and less than 10% voltage degradation over 1,000 hour hold test at 600 mA/cm ² at T>60 °C.	9/30/2018	Annual Milestone	Not started

Go/No-Go Description	Criteria	End Date	Progress
AEMFC Durability	In alignment with DOE 2019, Q2 AEM target, Demonstrate AEM fuel cell initial performance of 0.6 V at 600 mA/cm ² on H ₂ /air (maximum pressure of 1.5 atma) in MEA, and less than 10% voltage degradation over 1,000 hour hold test at 600 mA/cm ² at T>60 °C.	9/30/2018	Not started