

Novel Fluorinated Ionomer for PEM Fuel Cells

Hui Xu (PI)

Giner Inc. Newton, MA

June 13, 2018

Project ID# FC185

This presentation does not contain any proprietary or confidential information

Project Overview

Timeline

Project Start Date: 4/9/2018
 Project End Date: 1/8/2019

Budget

 Total Project Value: \$150 K

Collaborator

• Prof. Chulsung Bae (RPI)

Barriers Addressed

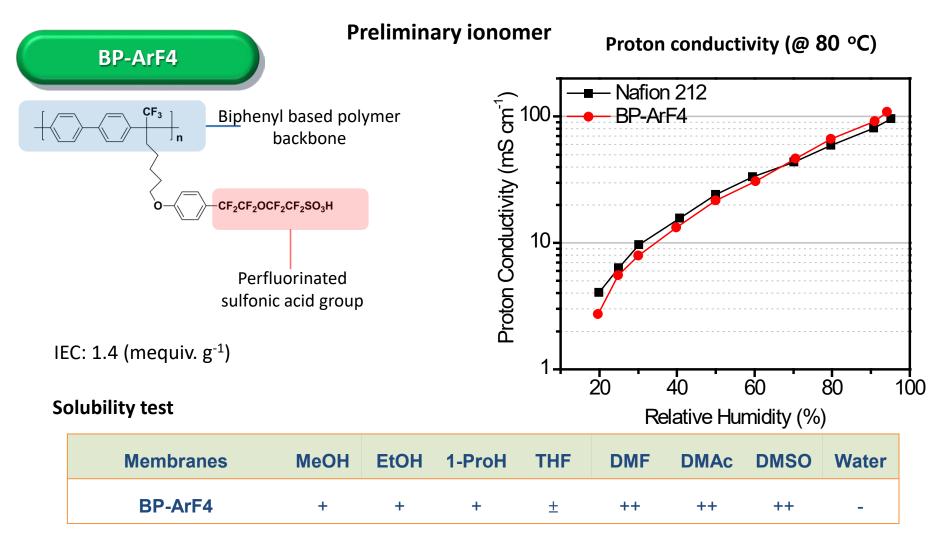
 PEM fuel cell transport loss at low Pt and high power


Technical Targets

- Design and synthesize novel fluorinated ionomer for PEM fuel cell cathodes to lower local transport loss
- Design fluorinated lonomer exclusively for PEM fuel cell electrodes
- Evaluate fuel cell performance and local transport resistance using developed ionomer, under low Pt and high power operation

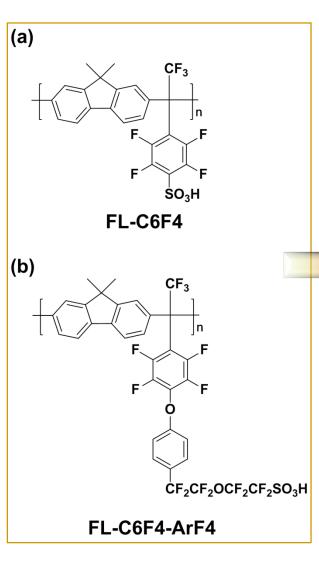
DOE Fuel Cell Catalyst Technical Targets

Characteristic	Units	2015 Status	2020 Targets
Platinum group metal total content (both electrodes) ^a	g / kW (rated,⁵ gross) @ 150 kPa (abs)	0.16 ^{c,d}	0.125
Platinum group metal (pgm) total loading (both electrodes) ^a	mg PGM / cm ² electrode area	0.13°	0.125
Mass activity ^e	A / mg PGM @ 900 mV _{iR-free}	>0.5 ^f	0.44
Loss in initial catalytic activity ^e	% mass activity loss	66°	<40
Loss in performance at 0.8 A/cm ^{2,e}	mV	13°	<30
Electrocatalyst support stability ^g	% mass activity loss	41 ^h	<40
Loss in performance at 1.5 A/cm ^{2,g}	mV	65 ^h	<30
PGM-free catalyst activity	A / cm ² @ 0.9 V _{IR-free}	0.016 ⁱ	>0.044 ^j


Kongkanand and Mathias, J. Phys. Chem. Lett. 7, 1127 (2016); Easterman et al, Macronolecules, 45, 7920 (2012)

Thin ionomer film formed in ultra-low Pt electrodes

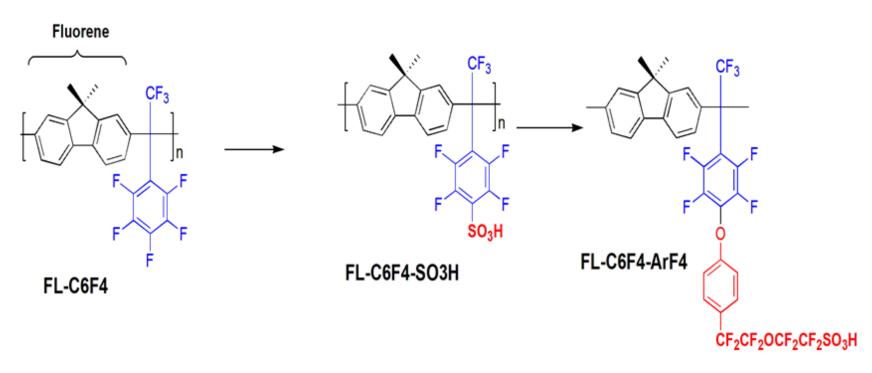
Large local oxygen transport due to thin ionomer film surrounding Pt particles


Inferior performance at low-Pt loading due to local oxygen transport resistance

Technical Approaches

++, soluble at room temp.; +, soluble at heating; ± partially soluble at heating; -, insoluble even at heating

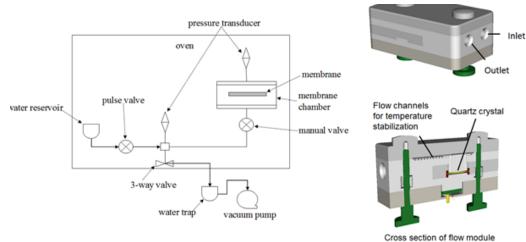
Proposed Ionomers



- Good proton conductivity in a range of temperature and humidity conditions
- Multiple fluorine moieties in both ionomers increase the acidity of sulfonic acid groups.
- Good compatibility with PFSA membranes enabling low resistance at the membrane-catalyst layer interface
- Multiple fluorine moieties in both ionomers can decrease the resistance originating from the different molecular component between the ionomers and PFSA membranes.
 - High permeability to gases, including O_2 , H_2
- High concentration of fluorine in both ionomers can enhance the gas permeation. [1].
- Low or no anion adsorption on Pt
- Rigid main back bones of both ionomers can effectively decrease the adsorption of sulfonate anion groups on Pt [2].
- Chemical durability sufficient to pass the accelerated stress tests in the DOE MYRD&D plan
- Main backbones of both ionomers are composed of chemically stable C-C bond without heterogeneous atoms which can affords good chemical stability even under rigorous operating conditions.

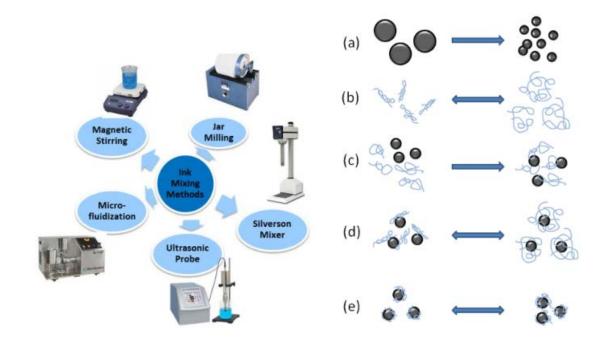
Task	% Time	Month								
		1	2	3	4	5	6	7	8	9
1. Synthesize lonomer	25									
 Fabricate and characterize lonomer thin films 	20									
 Design and characterize fuel cell electrodes 	30									
 Evaluate fuel cell performance and transport resistance 	35									
Project Management										
Report				х			х			X

Task 1: Synthesize Ionomer


- Both FL-C6F4-SO₃H and FL-C6F4-ArF4 potentially have high chemical durability because the backbone of these polymers are composed of all C–C bonds without heteroatoms.
- □ The multiple fluorine-substituted benzene ring can effectively shield the ether linkage (-O-) from the reactive radicals by the strong electron-withdrawing effect of fluorine.

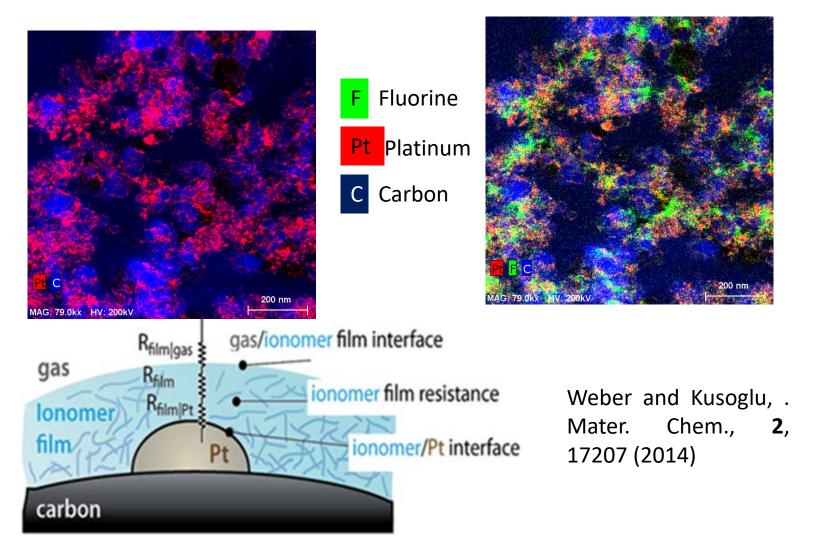
Task 2: Fabricate and characterize

Ionomer thin films

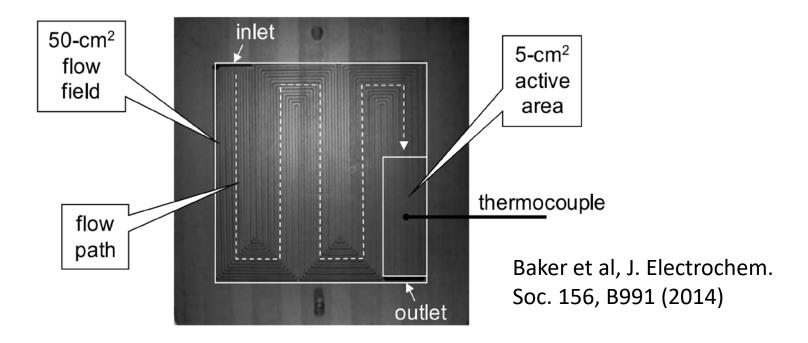

Fundamental Properties

Simultaneous water uptake and diffusivity Electro-osmotic drag coefficient Gas permeability Membrane conductivity Mechanical properties

- □ Silicon or platinum will be used as substrates
- Thin-films will be spun-cast from ionomer solutions to the substrate
- Thin films will be characterized in terms of water uptake, diffusivity and gas permeability


Task 3: Design and characterize fuel cell electrodes using proposed ionomers

Catalyst ink fabrication and complex interactions


- (a) break-down of core catalyst agglomeration,
- (b) ionomer re-conformation in various solvent blends
- (c) ionomer adsorption onto catalyst particle surface
- (d) ionomer re-conformation on particle surface
- (e) formation and breaking-up of flocculation

Interaction of Carbon, Pt and Ionomer

Complicated interaction of carbon, Pt and developed ionomer will be investigated by TEM and modeling

Task 4: Evaluate fuel cell performance and transport resistance

□ A limiting current approach will be used to measure the transport resistance. $R_T = Rch + R_{DM} + R_{MPL} + R_{other}$

Oxygen balanced with helium and variety in oxygen partial pressure will be performed to analyze the transport resistance from various sources.

Milestones

Delivery 10 g ionomer of each category

- Proton conductivity at 80 °C: 20 mS/cm at 50% RH and 90 mS/cm at 98% RH
- □ Gas permeability: at least 2X increase compared to Nafion 1100EW ionomer
- ❑ Local O₂ transport resistance: at least 30% decrease compared to Nafion 1100EW ionomer

Team Collaboration

Institutions	Roles						
<u>Giner Inc. (Giner)</u> Hui Xu (Pl)	Prime, oversees the project; MEA design and fabrication; performance test and data analysis						
Rensselaer Polytechnic Institute (RPI): Prof. Chulsung Bae	Subcontractor,fluorinatedhydrocarbonionomerdesign,synthesis and scale-up						

🖵 Biweekly meeting 🛛 🔲 Qu

□ Quarter report/project review

<u>Summary</u>

□ A novel fluorinated hydrocarbon ionomer has been proposed for PEM fuel cell cathode with anticipated properties

- High permeability to gases, including O₂, H₂
- Low or no anion adsorption on Pt

Thin-films derived from the ionomer will be fabricated and their water uptake and gas permeability properties will be compared to those of bulk membranes

□ The ionomer will be implemented to fuel cell electrodes to improve low-Pt and high-power operations

- Interaction of carbon, Pt and ionomer will be investigated
- Local oxygen transport resistance due to ionomer thin film will be characterized

Acknowledgments

- Financial support from DOE SBIR/STTR Program
- Technical Manager
 - Dr. Dimitrios Papageorgopoulos
- Collaborators
 - Prof. Chulsung Bae (RPI)
 - Prof. Jasna Jankovic (Univ. of Connecticut)
- Giner Personnel
 - Jason Willey
 - Chao Lei
 - Corky Mittelsteadt