

AvCarb Material Solutions

Two Industrial Avenue Lowell, MA 01851-5199 USA

www.AvCarb.com

Moving Energy with Carbon Fiber

Development of Innovative Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

PI: Jason Morgan

AvCarb Material Solutions 2 Industrial Avenue, Lowell, MA

Wednesday, June 13th, 2018

Project ID #: fc187

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Start Date: April 9, 2018
- End Date: January 8, 2019
- 0% complete

Barriers

- Performance improved water management properties
- Durability improved corrosion resistance
- Cost high-volume manufacturing methods

Budget

- Total project funding:
 - DOE share: \$149,997
- Funding received in FY18: \$149,997
- Funding for FY19: \$0
- This is an SBIR Phase I project

Partners

- Tufts University Dr. Iryna Zenyuk
- University of Miami Dr. Hongtan Liu
- Gaia Energy Research Institute Dr. Whitney Colella
- AvCarb Material Solutions Prime

Project Relevance (1)

This project addresses three DOE technical barriers:

Performance:

- Improved water management properties through:
 - Controlled hydrophobic/hydrophilic gradient within the GDL
 - Improved MPL properties (penetration and micro-cracking)
 - Modification of in-plane/through-plane morphological properties

Durability:

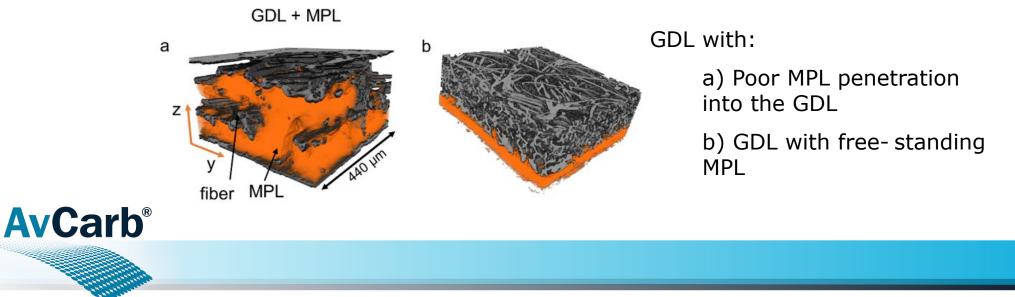
- Improved corrosion resistance through:
 - Heat treatment process improved uniformity, influence of temperature
 - Particulate types in the MPL (graphite vs. carbon black)

Cost:

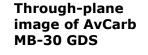
- Utilization of high-volume manufacturing methods
- Development of a techno-economic analysis for high-volume manufacturing of improved GDL design at automotive production levels

Performance:

Controlling the hydrophobic/hydrophilic gradient within the GDL


- A three-pronged approach is proposed by the team including:
 - Controlled penetration of PTFE within the GDL
 - Control the solids content of the PTFE solution and alter the coating style to limit the penetration of PTFE within the GDL
 - Utilize different PTFE loadings in multiple MPLs applied on the surface of the GDL
 - Create multiple MPLs of similar construction (same particle type/size), but with various PTFE loadings and apply them in sequence to create a gradient.
 - Utilize a hydrophilic agent on one side of the GDL to create a gradient

Performance:


Improved MPL

- Ink penetration:
 - Adjustments to MPL composition (e.g., particle size, viscosity) can be made to control the amount of penetration of the MPL into the substrate
- Controlled micro-cracking
 - Altering the drying profile (quick heat applied to the surface) will allow for the rapid formation of a smooth solid layer. Additional heating will drive the liquid through the surface, creating micro-cracking within the GDL.

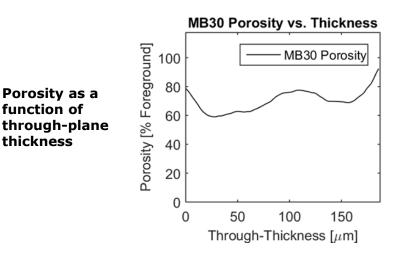
Performance:

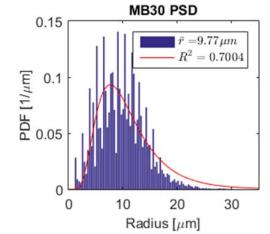
- Modification of Inplane/Through-plane morphological properties
 - Saturation Ink:
 - Modify amount of binder and types of particles in the substrate in the saturation ink
 - Heat Treatment Profile:
 - Altering the ramp rate and soak time to influence the cross-linking of the binder and alter the pore size and structure
 - Measurement:
 - Utilize X-ray CT scans to evaluate changes to the structure

Porositv as a

function of

thickness


Pore size


GDS

distribution of

AvCarb MB-30

Durability:

Improved conductivity and corrosion resistance

- Heat treatment
 - Examine the impact of the temperature and soak time for the graphitization process on the GDL and determine its effect on thermal and electrical properties of the substrate
- Particle Type
 - Investigate potential improvements in corrosion resistance by utilizing graphite particles in place of carbon black particles within the substrate

Cost

Development of a processing plant model

Estimate of the costs associated with producing GDLs with the improvements from this project at a commercialization volume consistent with a FCEV fleet to ensure any modifications can meet the DOE cost targets

This program is in its initial phase, so far the focus has been on:

- Preparing sample designs
- Obtaining necessary materials
- Coordinating the production schedule
- Setting up contracts and charge numbers
- Organization of the team (kick-off meeting)
- Sending standard production materials for baseline testing

AvCarb Material Solutions – Prime

Tufts University – Partner

- > Dr. Iryna Zenyuk will lead the effort to:
 - Conduct ex-situ corrosion testing on provided novel GDLs from AvCarb
 - Measure key morphological properties, such as porosity, pore size distribution, and tortuosity with X-ray CT

University of Miami – Partner

- Dr. Hongtan Liu will lead the effort to:
 - Fabricate MEAs with commercially available catalyst/membranes and novel GDLs
 - Provide in-situ performance data of various improved GDL designs

Gaia Energy Research Institute – Dr. Whitney Colella

- Dr. Whitney Colella will lead the effort to:
 - Build a preliminary plant model for manufacturing the novel GDL designs
 - Estimate the cost of the GDL at volumes adequate to support a FCEV fleet

AvCarb[®]

This program has just begun, please find a projected timeline for the efforts highlighted in this program below

	Work Stream		Task	M1	M2	M3	M4	M5	M6	M7	M8	M9	
1	Producing a Hydrophobic/Hydrophilic Gradient	1.1	Modify penetration level of PTFE solution										
		1.2	Produce samples with modified MPLs applied										
		1.3	Evaluate performance of initial samples										
		1.4	Utilize hydrophilic coating on GDL*										•
2	Controlling MPL Penetration and MPL Micro-cracking	2.1	Modifying the MPL solution for optimal penetration										
		2.2	Modification of dyring conditions to create micro- cracking										
		2.3	GDL Characterization & Testing										
		2.4	Adjustments to processing conditions*										
3	Modification of the In- Plane/Through-Plane Permeability Ratio	3.1	Investigate various compositions of saturation inks										
		3.2	Determine influence of heat treatment process										
		3.3	Optimize In-plane/Through-plane permeability ratio										
	Improvement of GDL Thermal and Electrical Conductivity	3.1	Modification of heat treatment process										
4		3.2	Prepare samples with different MPL constituents										
		3.3	Testing of materials										
	*If necessary Milestone												

Any proposed future work is subject to change based on funding level

- Receiving necessary materials to produce samples
- Scheduling time to create sample materials
- Test station validation
- Scheduling time for ex-situ measurement techniques
- Coordinating efforts for maximum efficiency
- Technical barriers for development
 - Can we adequately produce hydrophilic/hydrophobic gradient?
 - Can we accurately measure the MPL penetration within the substrate?
 - > Will we be able to discern the uniformity of micro-cracking in the MPL?
 - Will alterations to the heat treatment process be adequate to change the corrosion resistance?

Objective

Develop advanced GDL designs for improved fuel cell performance

Relevance

GDLs play a key role in the performance of fuel cells and technical barriers remain in performance, durability, and cost

Approach

- Generate novel GDL designs focused on improving:
 - Performance Improve water management by creating a hydrophobic/hydrophilic distribution in the GDL, control MPL penetration and micro-cracking, and improve the in-plane/through-plane morphological properties
 - Durability Utilize improved heat treat processes and different particle types to enhance corrosion resistance
 - Cost Develop a techno-economic model to estimate GDL costs at commercialization volumes consistent with a fleet of FCEV

Accomplishments

Program has just begun, initial efforts are underway

Collaborations

This is a strong, experienced group comprised of both industry partners and academia

