

Membrane Electrode Assembly Manufacturing Automation Technology for the Electrochemical Compression of Hydrogen

Michael Ulsh National Renewable Energy Laboratory June 14, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID: h2006

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 05/01/18
- Project end date: 11/01/19
- Total project budget: \$371,240
 - Total partner share: \$150,000
 - Total federal share: \$150,000
 - Total partner in-kind:\$71,240
 - Total DOE funds spent*: \$0

* As of 4/17/18

Barriers

- Lack of High-Volume MEA Processes
- Low Levels of Quality Control

Partners

- HyET
- NREL
- LBNL (associated project with HyET)

Relevance

- Relevance (H₂@Scale CRADA call)
 - Develop materials, processing techniques, and/or innovative designs for components used in hydrogen equipment and compressors, to enhance durability
 - Design novel manufacturing approaches and technologies for compressors and pipeline fatigue life and durability
- Objectives:
 - Full rheological understanding of optimum ink formulation for roll-to-roll coating method for catalyst layers + electrochemical hydrogen compression (EHC) relevant tests
 - Implementation of real-time optical/areal quality inspection techniques for electrodes, membranes and MEA (sub)assemblies
 - Compare EHC performance of R2R and manually manufactured MEAs
 - Design and specification of an EHC MEA manufacturing line

Approach

- Approach
 - Project will leverage NREL in-line MEA inspection and electrode scaling capabilities and expertise developed for fuel cell and electrolysis materials, and apply to EHC
 - NREL will develop QC techniques and inks/coating process understanding and will transfer knowledge to HyET
 - HyET will perform in situ testing of coated materials in their hardware/system
 - Project outcomes will inform manufacturing line specification

Approach

• Milestones

Deliverable title	Description	Producer	Due date
			Month (M)
Suitable ink formulation	Standard operating procedure with a	NREL	M6
	specification for mixing method of		
	specified catalyst and solvents		
Coated electrodes	Either gas diffusion electrode (GDE) or	NREL	M12
	Catalyst Coated Membrane (CCM) type		
	electrodes ready for further assembly		
	into MEAs		
Selection report on inline	Description of inline quality inspection	NREL	M12
quality control (QC) inspection	methods for the MEA production for		
methods	EHC application		
EHC test report on manual vs	Test report comparing the EHC	HyET	M16
automated MEA production	performance in single cells and stacks of		
quality	MEAs 1) produced in the current way,		
	manually and 2) produced with the new		
	developed process		
Manufacturing line design spec	Report on a design study for a new EHC	HyET	M18
	MEA manufacturing line including a list		
	of potential US suppliers of		
	manufacturing equipment		NREL

5

Accomplishments and Progress

- Funding has not yet been received, therefore there are no technical accomplishments to report
- We were able to leverage a visit to Golden, CO by HyET for other research activities to have a project kick-off meeting, with our LBNL collaborator

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

 This is a newly awarded project, and thus was not previously reviewed

Collaboration and Coordination

- Industry partner: HyET
 - Defines objectives
 - Defines materials and structures
 - Provides information about applicable manufacturing processes and techniques
 - Performs in situ cell testing of NREL-produced cell materials
 - Defines major parameters for MEA manufacturing line
- National lab partner: NREL
 - Explores and develops relevant inspection techniques for MEA materials
 - Formulates and characterizes inks for scalable electrode processing
 - Explores applicable coating processes
 - Provides methods and coated materials to HyET
 - Assists in the specification of MEA manufacturing line
- Additional partner: LBNL
 - LBNL has project with HyET; NREL and LBNL will coordinate on research as applicable

Challenges and Barriers

- Identifying suitable in-line inspection techniques for HyET MEA materials
- Formulating inks for scalable processes
- Identifying scalable process methods and procedures for high-volume electrode production

Proposed Future Work

• See milestone plan

Technology Transfer Activities

- Under the CRADA, applicable technology will be transferred to the industry partner
- NREL will assist HyET in the implementation of project outcomes

Summary

- Project awarded under H₂@Scale CRADA call
 - Industry partner: HyET
 - Lab partner: NREL
- Approach: leverage NREL manufacturing R&D capabilities developed for fuel cells to similar EHC materials and processes
- Relevance: develop materials, processes, techniques and manufacturing approaches for electrochemical hydrogen compression MEAs
- Accomplishments/Future Work: Project just initiated

Acknowledgements

HyET

- Martijn Mulder, Industry Partner PI
 NREL
- Peter Rupnowski, QC Development sub-lead
- Scott Mauger, MEA Scaling sub-lead LBNL
- Gao Liu, Sister-project collaborator

Thank You

www.nrel.gov

Publication Number

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Back-Up Slides

NREL Capabilities: In-line Inspection

Development of real-time, in-line quality control diagnostics to support the continued scale-up of MEA components for low-cost production

- Material portfolio: Fuel cell, battery, and electrolyzer materials
- Membrane defect imaging and thickness mapping
- Electrode and GDL uniformity
- MEA shorting and gas crossover
- Property measurement, e.g. porosity
- Optical and IR diagnostic platforms
- Non-destructive, 100% inspection

Infrared imaging of electrode and MEA defects

Optical reflectance imaging of membrane and electrode defects

NREL Capabilities: MEA Scaling

Understanding how parameters of scalable, high-volume processes effect MEA morphology, uniformity, and performance

- Roll-to-roll coating station
 - Slot/knife coating head
 - Micro-gravure coating head
 - 50-300 mm coating width
 - 4 independently controllable drying sections
 - Coating speeds from 0.2-10 m/min
- Applicable to various thinfilm technology applications
- Formulation, rheology, coating, drying studies

Project Task Details

• Task 1: Inks and Coating Process Development (NREL)

NREL will bring to bear ink characterization tools, including rheology, dynamic light scattering, and zeta potential, and electrode fabrication equipment across several scales including a roll-to-roll coating line to evaluate and perform initial optimization of inks and coatings for EHC electrodes. NREL will perform parametric studies to understand the impact of formulation and process variables on the thickness and uniformity of electrode layers. NREL will provide electrode sheet materials to HyET for assembly into cells and in situ testing at HyET's facility.

• Task 2: Quality Inspection Development (NREL)

NREL will bring to bear multiple test-beds for the development of real-time quality inspection techniques for electrodes, membranes, and MEA subassemblies for HyET's EHC MEA materials. NREL's activity focuses on areal inspection techniques, i.e. techniques that utilize optical or infrared imaging to provide the potential for 100% inspection of MEA material webs (rather than point measurements). These techniques enable detection of small discrete defects in MEA materials as well as determination of overall film or layer uniformity. If appropriate, NREL can utilize its industrial-style web-line to validate techniques with sheet or roll materials.

Project Task Details

 Task 3: EHC testing of R2R vs manual MEA based EHC single cell & stack (HyET)

HyET will manufacture the MEAs and perform EHC cell testing which will include standard diagnostics (as used for PEMFC) like shorting tests, IVcurve recording, (Electrochemical Impedance Spectroscopy) EIS and cyclic voltammetry (CV analysis), hydrogen (H2) cross-over testing, H2 pumping at ambient pressure and finally compression testing to maximum pressure. Duration testing to evaluate the performance stability will conclude the membrane evaluation test program. Performance of the manual vs automated manufactured MEAs will be compared.

• Task 4: Specification of a manufacturing Line (HyET+NREL)

Using its experience with R2R equipment and fabrication of MEA materials, and based on its work and results in Tasks 1 and 2, NREL will assist HyET in the design and specification of a manufacturing line for the high volume production of its MEAs. NREL will specifically provide inputs relative to electrode coating and quality inspection devices and integration. US suppliers of required production line equipment will be identified.