

PG&E H2@Scale CRADA: Optimizing an Integrated Solar-Electrolysis System

Josh Eichman, PhD and Omar Guerra Fernandez, PhD March 1, 2018

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- NREL Team
- Goal and objectives
- Project Team and Roles
- Tasks and schedule
- Deliverables
- Previous studies
- Approach

NREL Team

Sustainable Transportation	Energy Productivity	Renewable Electricity	Systems Integration	Partnerships
Vehicle Technologies	Residential Buildings	Solar Wind	Grid Integration of Clean Energy	Private Industry
Hydrogen	Commercial Buildings	Wild Water: Marine	Distributed Energy Systems Batteries and	Federal Agencies
Biofuels	Manufactur	Hydrokinetics Geothermal	Thermal Storage Energy Analysis	State/Local Government
	ing	Councilian		International

Josh Eichman

NREL Transportation and Hydrogen Systems Center Ph.D. Mechanical Engineering Joshua.eichman@nrel.gov

Omar Guerra Fernandez

NREL Power Systems Engineering Center Ph.D. Chemical Engineering <u>OmarJose.GuerraFernandez@nrel.gov</u>

<u>Goal</u>

Model and evaluate an optimized integrated renewable-electrolysis system to establish the potential benefits and facilitate broader adoption.

Objectives

- 1. Holistically model various value streams created by an integrated solar power electrolyzer system that produces hydrogen for use in the transportation sector
- 2. Design an optimized integrated renewable power electrolyzer system (solar power plant, electrolyzer, and hydrogen storage)

The value streams that we will model are:

- Power sold from the renewable plant into the grid
- Ancillary services provided by the renewable plant which the electrolyzer enables
- Reduced need for reserves and flexibility to support the intermittent solar resource
- Net value of hydrogen produced
- Additional credit and incentive value from the production of a low carbon fuel

Project Team and Roles

- Pacific Gas & Electric Corporation
 - Project Management
 - Feedback on PG&E needs and market opportunities and constraints
 - Critical review
- National Renewable Energy Laboratory
 - Modeling and analysis
 - Interim progress presentations and reporting
 - Draft and final report
- California Air Resources Board
 - New LCFS pathways
 - Value of incentives and credits
 - Understanding emissions reduction potential for solar-electrolysis systems (compare to PV alone)
 - Critical review
- California Governor's Office of Business and Economic Development
 - Current opportunities for solar-electrolysis providers (e.g., project financing, incentives)
 - New strategies to encourage business activity in the solar-electrolysis space
 - Critical review

Tasks and Schedule

Deliverables

- 1. Kick-off meeting
- 2. Monthly progress update
- 3. Presentation of interim results (every 4 months)
- 4. Draft report and worksheets for review
- 5. Presentation of final results
- 6. Final report and worksheets

Previous Studies

Electrolyzer Flexibility Testing

 Electrolyzers can respond fast enough and for sufficient duration to participate in electricity markets

NATIONAL RENEWABLE ENERGY LABORATORY

Renewable Electrolysis Integrated System Design and Testing

- NREL has tested direct coupling of wind and PV with electrolysis equipment
- PV shows efficiency improvements beyond conventional maximum power point tracking

Source: Peters, 2017

CARB-DOE P2G/P2H Business Case Study (December 2016)

CARB-DOE P2G/P2H Business Case Study (December 2016)

- The addition of onsite renewables reduces all energy cost components and is even valuable without the LCFS.
- Scenario 1 and 2 are the most compelling because of the LCFS for FCEVs.
- Pipeline delivery is cheaper but can vary significantly based on location compared to truck delivery.

Source: Eichman, J., Flores-Espino, F., (2016). www.nrel.gov/docs/fy17osti/67384.pdf

CARB-DOE P2G/P2H Business Case Study (December 2016)

 Currently, energy market value comes from reducing demand during price spikes

NATIONAL RENEWABLE ENERGY LABORATORY

Summary

Utility

Rates

Utility

Ancillary

Service

Value

Average

Energy

Price

Fuel Cell and Hydrogen Joint Undertaking (FCH-JU) P2H Business Cases (June 2017)

- Identify early business cases and assess their potential replicability within the EU from now until 2025.
- Identify particular sub-national locations where low-cost electricity is available based on electricity market and transmission grid models.

]	1	Ĩ	
WACC on CAPEX: 5% Project lifetime: 20 years	SC mobility (Albi, France)		Food industry (Trige, Denmark)		Large industry (Lubeck, Germany)	
	2017	2025	2017	2025	2017	2025
Primary market H2 volume (t/year)	270	950	900	900	3 230	3 230
Average total electricity price for prim. market (€/MWh)	44	45	38	47	17	26
Net margin without grid services (k€/MW/year)	39	71	228	248	-146	30
Net margin with grid services (k€/MW/year)	159	256	373	393	-13	195
Share of grid services in net margin (%)	75%	72 %	39%	37%		85%
Payback time without grid services (years)	11.0	9.0	4.6	3.7	-	8.4
Payback time with grid services (years)	8.0	4.5	3.4	2.7	-	3.5
Key risk factors	 Taxes & H2 price Size of f Injectior FCR value 	Grid fees leets tariff ue	H2 price Taxes & FCR value	Grid fees Ie	 Taxes & FCR val Carbon 	a Grid fees lue price

Source: FCH-JU 2017 (www.fch.europa.eu/sites/default/files/P2H_Full_Study_FCH

Wholesale market value (energy and ancillary services) (2016)

Optimizing Wind-Electrolytic Hydrogen Systems in Denmark (2017)

Summary

- Benefits of integration of offshore wind and electrolysis are captured in terms of a return on investment
- The paper examines wholesale prices in the Danish electricity system
- Tradeoffs between selling hydrogen to customers or regenerating electricity are explored
- The most beneficial • configuration is to produce hydrogen to complement the wind farm and sell directly to end users

	Return on Investment (year)	Total benefits in NPV (M€/yr)	Hydrogen price (€/kg)
BENCHMARK	/	4.15	/
Scenario I	Inf	4.15	0
Scenario II	24.4	4.61	2
Scenario III	5.5	7.02	5
Scenario IV	2.6	13.13	9

Source: Hou et al., 2017. Optimizing investments in coupled offshore wind-electrolytic hydrogen storage systems in

NATIONAL RENEWABLE ENERGY LABORATORY JOURNAL OF Power Sources, 359: 186-197.

Approach

Equipment Configuration (all systems have access to wholesale service)

Source: Matt Stiveson, NREL 12508; Keith Wipke, NREL 17319; NextEnergy Center, NREL 16129; ENTECH, NREL 03657; Lincoln Composites, NREL 22261

Value Streams

- Photovoltaic
 - Incentives and credits
 - Sale of electricity
 - Renewable credits

- Electrolysis
 - Incentives and credits
 - Sale of hydrogen
 - Grid services (e.g., energy, capacity, ancillary services)
 - Smooth photovoltaic supply

- Fuel Cell
 - Incentives and credits
 - Sale of electricity
 - Grid services (e.g., energy, capacity, ancillary services)
 - Smooth photovoltaic supply

Source: Matt Stiveson, NREL 12508; Keith Wipke, NREL 17319; ENTECH, NREL 03657

Device Optimization for grid integration using RODeO

1000 **RODeO** (Revenue Operation and Device (MM) Optimization Model) optimizes uses mixed-800 integer linear programming to maximize 90% Power capacity 600 Inclute enue and optimize equipment option PGE factor Retail and Electrolyzer E20 **Energy Price** 400 -Baseload wholesale market Flexible - 0 MW PV Utility **Fixed Demand Charge** Utility integration -Flexible - 0.5 MW PV 200 rate Service Timed Demand Charge Capital, FOM and -Flexible - 1 MW PV (summ VOM are included Meter Cost 0 er) **On-site generation** 10 12 14 16 18 20 22 24 8 ISO/RTO (e.g., PV or Wind) **Energy Price** electricity Revenue Hour of the day Additional building **Operating Profiles Ancillary Service Prices** load Operation markets 14 (By/s) and Device 90% Yearly Capacity Factor Ability to be used 0.71 Maximum Revenue **Renewable Power** as a model Optimization Cost 0.54 10 (by component) **Operation Parameters** 10.8 predictive Other 9.8 Model ş 8 controller 8.0 Inputs **Building Load** 7.8 Deliv (RODeO) Annualized Cost 5.7 Hydrogen Demand Breakeven production and delivery cost (by component) Current achievable reductions duction Potential future changes 2 Capital and Install Cost Fixed O&M Cost Cost eliscoloent reeate house redu Inputs Interest Rate on debt Lifetime **RODeO optimizes device operation to understand** Example res economic competitiveness (www.nrel.gov/docs/fv17osti/67384.ndf)

Desired Outputs

- At a high level...
 - Market points that trigger the decisions made by the solar facility owner.
 - Additional value created by the hydrogen system
 - Consider how a system would be sized for PG&E's PV solar station in Vacaville
 - Specify how the design would change in other high-solar regions of California (i.e., region, solar insolation, distances from hydrogen fuel demand, etc.)
- Specifics...
 - Optimal size of the electrolyzer
 - Optimal size of the hydrogen storage tank
 - o Breakdown of optimal electrolyzer operation by service provided
 - Potential impact on excess solar generation
 - Impacts to electrolyzer performance caused by participation in ancillary services markets
- Are we missing anything?

Josh Eichman: joshua.eichman@nrel.gov Omar Guerra Fernandez: OmarJose.GuerraFernandez@nrel.gov

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Energy storage benefit for renewables

Source: Braff et al., 2016. Value of storage technologies for wind and solar energy. Natur