

Validating an electrolysis system with high output pressure

Danny Terlip, Presenter National Renewable Energy Laboratory June 14, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID H2036

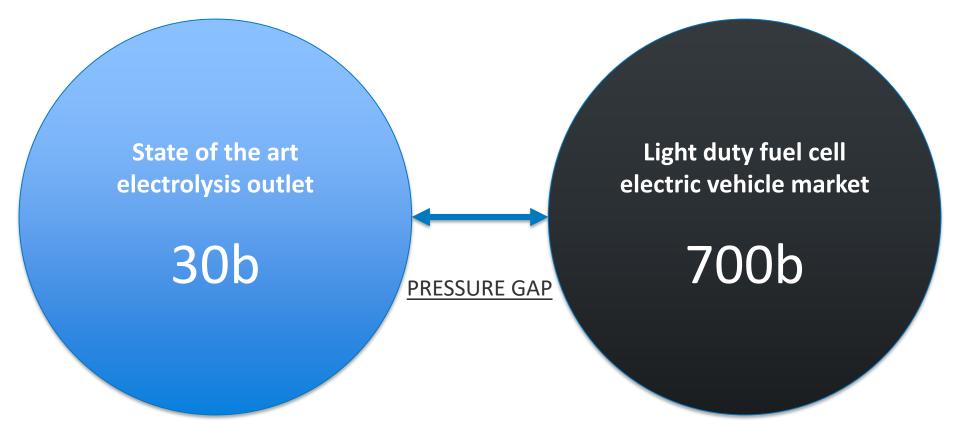
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 8/1/2018 (estimated)
- Project end date: 8/1/2019 (estimated)
- Total project budget: \$224k
 - Total recipient share: \$124k
 - Total federal share: \$100k
 - Total DOE funds spent*: \$0

* As of 4/17/18


Barriers

- Reliability and Costs of Hydrogen Compression (Delivery B)
- Other Fueling Site/Terminal Operations (Delivery I)
- Hydrogen from Renewable Resources (TV G)

Partners

- Honda R&D Americas, Inc.
- Danny Terlip, NREL, PI

Relevance

PRESSURE GAP necessitates additional, costly mechanical compression

Approach - 3rd party benchmarking and validation of Honda system

Integrate and test Honda electrochemical hydrogen compressor in NREL's Hydrogen Infrastructure Testing and Research Facility (HITRF)

HITRF Major System Components Type 1 Low Pressure 200b, 189 kg 5 banks ground Storage storage Type 1 Med Pressure 400b, 103 kg 3 banks ground Storage storage Type 2 **High Pressure** 875b, 62 kg 4 banks ground Storage storage Controlled 4000A DC, Power supply 4 units remotely, 250V DC high slew Mechanical Up to 1 400b, 900b 3 units compression kg/min

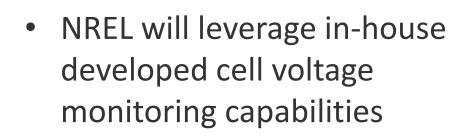
Approach – Timeline

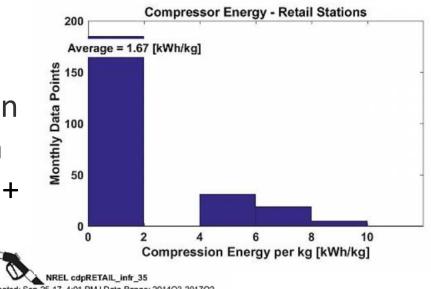
- In development of the task schedule and deliverables
- In development of the method for measuring impact and integration of research reporting

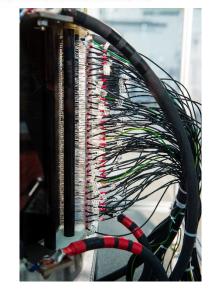
	This is the timeline we have developd so far														
2018									2019						
Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
		Tas	sk 1	Test Plan	& HAZOP	NREL Te	st Bench l	Jpgrades	Test P	rep & Inst	allation				
									Tas	sk 2	Benchr	nark Testi	ng		
									Tas	sk 3 G	rid Integra	tion Testi	ng		
												Task	4	Use Case	Assessmen

Approach – Task 1 Site Preparation and Test Plan Development

- Honda will provide self-developed PEM stack to NREL
- NREL will perform testing at the Energy Systems Integration Facility (ESIF) in Golden, CO

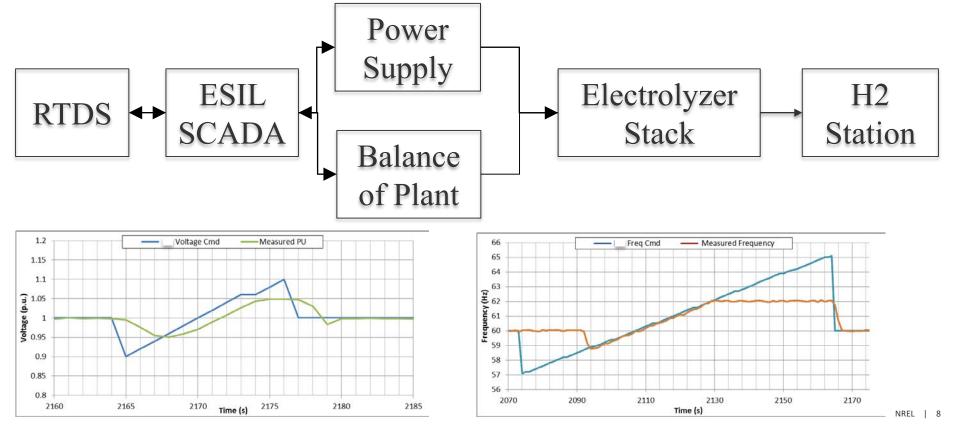

HITRF system must be upgraded for 700b stack


• Team will define widely accepted metrics for benchmarking and design test protocols accordingly


Energy efficiency	Mean time between failure	Product quality			
Production rate	Failure modes	Operating temperature			
Water flow rate	Output pressure	Response to change			

Approach – Task 2 Stack and System Benchmarking

 NREL will operate the stack at various power, pressure and temperature levels to create an efficiency map for comparison with conventional electrolysis + mechanical compression technologies



Approach – Task 3 Renewable Source and Grid Integration Testing

 NREL will use its controllable AC/DC power supplies to simulate different renewable or regulation profiles for regions identified as potential deployment sites for this electrolyzer

Accomplishments and Progress

• Finalizing details of agreement

Collaboration and Coordination

NREL and Honda R&D Americas, Inc. have a good working relationship

- Honda needs a third party validation site with 700b hydrogen capabilities
- NREL will test and provide data to Honda about its product and how it compares with more conventional products
- This may enable improvements in future models and may provide insight into other applications for this technology

Remaining Challenges and Barriers

- NREL must upgrade its Stack Test Bed to accommodate 700 bar hydrogen
- NREL and Honda must negotiate the test plan and timeline.

Proposed Future Work

• Begin tasks

Summary

- The project has not started yet
- NREL will test Honda electrolyzer/compressor system
- NREL will measure metrics to compare with conventional electrolzyer + compression technology (i.e. mechanical)
- NREL will subject the stack to varying input power, that follows renewable energy profiles, while measuring performance.

Thank You

www.nrel.gov

Publication Number

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

