

Turboexpander: Alternative Fueling Concept for Fuel Cell Electric Vehicle Fast Fill – Proof of Concept Testing

P.I. Name: Rob Burgess Presenter Name Matt Post National Renewable Energy Laboratory June 14, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID # h2039

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 06/01/18
- Project end date: 06/01/19
- Total project budget: \$250K
 - CRADA Call Tasks
 - DOE/Honda \$25K each
 - AOP Tasks
 - DOE/Toyota \$100K each
 - Total DOE funds spent*: \$0

* As of 3/31/18

Barriers

- Cost of dispensed hydrogen
- Parasitic power requirements for -40°C precooling
- Footprint for chiller and heat exchanger at hydrogen station

Partners

- Toyota
- Honda
- FOA Proposal
 - Sandia
 - Creare
 - Anglo American

Relevance: Project Objectives

To provide turboexpander proof of concept test data that can be used as a basis for full prototype design and system analysis. The turboexpander is designed to replace the Joule-Thomson valve currently used to control SAE J2601 pressure ramp rates.

- 1. System Analysis: Complete system thermodynamic sizing and performance analysis. System analysis will optimize expander operation over transient flow conditions.
- 2. Design/Build: Fabricate hydrogen turboexpander hardware capable of conducting proof of concept testing. Testing will utilize NREL's hydrogen demonstration station and gravimetric test apparatus.
- 3. Validation Testing: Perform turboexpander testing utilizing NREL's Hydrogen Infrastructure Testing and Research Facility (HITRF) capability.
- 4. Final Reporting

Relevance: Problem Statement

Problem Statement: Station precooling is energy intensive and prone to high cost of installation and operation

Current Technology

- NREL station: -40°C precooling system
- Control valve regulates pressure drop but induces Joule Thomson heating
- Chiller 12KW, \$130K, 26ft² footprint
- Heat Exchanger \$55K, 21ft² footprint
- Heat Transfer Fluid \$7K

Turboexpander Benefits

- Save capital & operating cost
- Minimize footprint/weight
- Improve station reliability
- Recycle percentage of pressure energy
- On demand chill down capability

Relevance: Joule Thomson Expansion

- Joule-Thomson coefficient is negative when operating within the pressures and temperatures experienced at a hydrogen dispenser (μ<0)
- Negative Joule-Thomson coefficient will result in heating of the hydrogen across an isenthalpic expansion (control valve)
- Joule-Thomson effect definition (Encyclopedia Britannica): "The change in temperature that accompanies expansion of a gas without production of work or transfer of heat."

Temperature Rise Effects – CNG Compression Heating

Cylinder Temperature, F

Fig. 4 Temperature in a 10"x50" Aluminum cylinder during a 3000 psia charge

CNG fast fill fueling shows a temperature rise under most conditions even though methane has a positive Joule-Thomson coefficient (i.e., it cools as it expands through the control valve)

> Source: "Modeling the Fast Fill Process in Natural Gas Vehicle Storage Cylinders", K. Kountz, Institute of Gas Technology, 1994

Isentropic Compression and Isenthalpic Expansion

Gas in the cylinder is assumed to be undergoing isentropic compression, while the gas entering the cylinder is undergoing an isenthalpic expansion

Hydrogen T-S Diagram

Heating of volume a and b are depicted on a T-S diagram; volumes will mix in the cylinder resulting in temperature which is "average" of the two volumes (mixing rate will depend on turbulent velocity)

Source: "Selected Cryogenic Data Notebook, Section III Properties of Hydrogen", Jensen et. al., BNL 10200-R, Revised August 1980

HyTransfer Fill Temperature Summary

- Horizontally filled tanks with H2 with a one-hole axial injector
- Type IV 36 l : 3 minute filling with Tinlet = -20°C

Initially, gas in the cylinder heats rapidly due to 1) high ΔP across throttling value and 2) high ΔT of isentropic compression in cylinder

Turboexpander Concept

Turbine energy can be recovered by coupling to an auxiliary compressor, which may show system level improvements over an electric generator power recovery concept

Turboexpander Concept

40% efficient turbine is capable of achieving -40°C precooled temperatures at worst case 40°C ambient temperature conditions

TurboexpanderConcept

Turboexpander Project Plan

Turboexpander Alternative Fueling Concept Project Plan																									
			Proposed Scope											Future Work											
Task	Subtask		Q1			Q2		Q3				Q4		Q5				Q6			Q7			Q8	
	('	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Turboexpander	1) Device Specification			<u> </u>	\Box'		<u> </u>		\Box	<u> </u>								\Box		\Box					\square
Design/Fabrication	2) System Layout			י_ק	\Box					<u> </u>								\Box		\Box					
, I	3) Conceptual Design				<u> </u>			<u> </u>	\Box	<u> </u>								[]		\Box					\square
, I	4) Safety Analysis			\Box'		4'	[]	<u> </u>	\Box	[]								\Box		\Box					
, I	5) Hardware Design			1			ב '	[]	[]	['				1				[]		\Box		1			
, I	6) Design Review			\Box		[]		[]	\Box	[]								\Box		\Box					
l!	7) Procurement/Fabrication*			1					<u>(</u> _'	[]				1				[]		\Box		1			
Testing	8) Assembly and System Testing			1			['	[]						1				[]		\Box		\Box			
, I	9) Turboexpander Testing			('	<u> </u>	<u> </u>	[<u> </u>	\Box				1	()	(([]	['	\square'		1			
/I	10) Data Compilation			1'				[]						4'				[]		\Box		\Box			
Reporting	11) Milestone: Final Report						[]						V												
Future Work	Testing scope based on test results						[]							CCT											
* Lead time is dependent on turboexpander vendor selection																									

Intellectual Property: Patent Application

- Hitachi has abandoned its patent application
- Hitachi is working on a concept with NEDO and plans to publish within one year
- Hitachi conceptual design shows a back to back turbine with 75% efficiency, suggesting radial inflow turbines in series

(12)		l States t Application Publicati DA et al.	on	 (10) Pub. No.: US 2016/0281928 A1 (43) Pub. Date: Sep. 29, 2016
(54)	HYDROG	EN PRECOOLING SYSTEM	(52)	
(71)	Applicant:	HITACHI PLANT MECHANICS CO., LTD., Kudamatsu-shi (JP)		CPC
(72)	Inventors:	Jun YOSHIDA, Kudamatsu-shi (JP); Takayuki KANEKO, Kudamatsu-shi (JP)		(2013.01); F17C 2270/0184 (2013.01); F17C 2227/0358 (2013.01); F17C 2227/0362 (2013.01)
(73)	Assignee:	HITACHI PLANT MECHANICS CO., LTD., Kudamatsu-shi (JP)	(57)	ABSTRACT
(21)	Appl. No.:	15/042,587		pose]
(22)	Filed:	Feb. 12, 2016	temp	blem] To present a precooling system for lowering the perature of hydrogen gas at a final filling unit of a hydro-
(30))) Foreign Application Priority Data		load	of a hydrogen station simple in construction, small in the of maintenance and management tasks, and capable of
Ma	ar. 23, 2015	(JP) 2015-059323		ering the running cost including the cost of consumption er source.
	-	ublication Classification	temp	ving Means] To precool hydrogen gas by lowering the perature of hydrogen gas by an expander 11 in a process
(51)	Int. Cl. F17C 5/06	(2006.01)		xpanding and compressing the hydrogen gas, and by ing use of its cold heat energy.

Future Work –								
Funding Opportunity Announcement								
	REL LE ENERGY LABORATORY							
FY	FY18 Hydrogen and Fuel Cell R&D FOA							
	FOA: DE-FOA-0001874 Concept Paper							
Project Title:	Project Title: Direct Cooling of Hydrogen to Decrease Energy Consumption in Hydrogen Vehicle Fueling Infrastructure							

- A concept paper has been submitted to DE-FOA-0001874 for \$1.5M to advance the turboexpander concept from proof of concept phase (current project) to prototype component and system level validation
- 20% industry cost share is required
- Technical partners include Sandia and Creare
- If the concept paper is selected NREL will pull together funding team

Summary

Turboexpander Advantages	Turboexpander Challenges
Reduce station footprint by eliminating chiller	Development time/cost required for system
and heat exchanger	design and development
Provide on-demand cooling that matches the	Expander maintenance and operation cost to
hydrogen fill cycle	maintain high reliability
Consistent back to back fills without a	Higher complexity of expander design
theoretical limit to number of fills	compared to chiller and heat exchanger
Recover compression energy improving overall	Limited number of suppliers in the market of
efficiency of station operation	high pressure expanders
Potential ability to improve J2601 protocol	Development time and cost for creating new
with faster fills and higher state of charge	J2601 protocol will require validation testing
(lower precooling temperatures are possible)	to meet SAE Fuel Cell Interface Committee
	needs

ESIF – Energy Systems Integration Facility NREL laboratory facility provides laboratory space R&D testing of high pressure hydrogen component and system.

Thank You

www.nrel.gov

Publication Number

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

