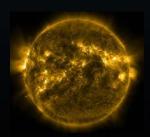
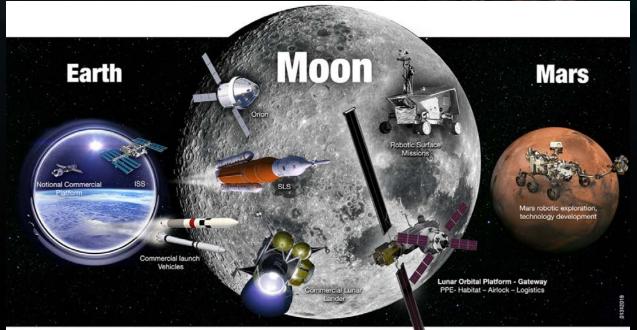


Presentation Outline


- NASA Overview and Scope
- Definitions
 - Types of Fuel Cell Systems
 - Energy Storage: Batteries vs. Regenerative Fuel Cells (RFC)
 - Comparison of Fuel Cell Technologies
 - Portability of Terrestrial technologies to Aerospace applications
- NASA applications benefitting from Electrochemistry
- Active NASA Fuel Cell research
 - Power Generation
 - Commodity Generation
 - Energy Storage
- Review

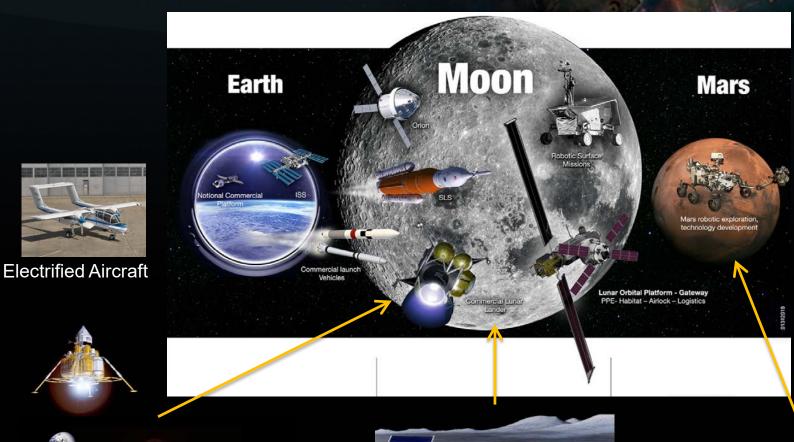

OVERVIEW AND SCOPE

NASA – Overview and Scope

NASA Programmatic

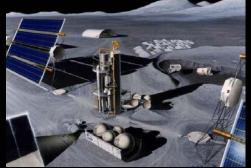
In Cislunar Space Commercial & International A return to the moon for long-term exploration partnerships Science Aeronautics LEO and Spaceflight Operations **Deep Space Exploration Exploration Research and Technology**

In LEO


On Mars

Research to inform future

crewed missions


NASA Applications benefitting from Electrochemistry

Landers

Lunar Outposts

Martian Outposts and Rovers

DEFINITIONS

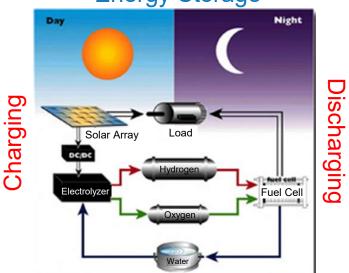
Definitions: Types of Aerospace Fuel Cell Systems

Primary Fuel Cell

Power Generation

Description

- Converts supplied reactant to DC electricity
- Operation limited by supplied reactants
- Not tied to external energy source


NASA Applications:

Sustained High-Power

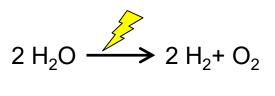
- Crewed transit vehicles (Apollo, Gemini, STS, etc.)
- Power-intense rovers/landing platforms

Regenerative Fuel Cell

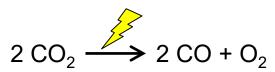
Energy Storage

Description

- Stores supplied energy as gaseous reactants
- Discharges power as requested by external load
- Tied to external energy source


NASA Applications:

Ensuring Continuous Power


- Surface Systems
 (exploration platforms, ISRU, crewed)
- Platforms to survive Lunar Night

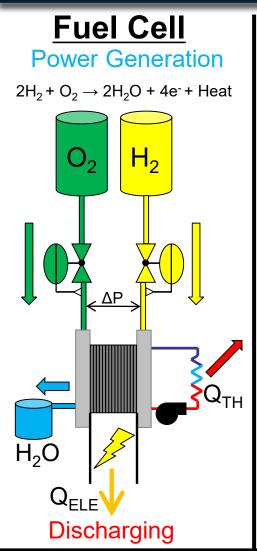
Electrolysis

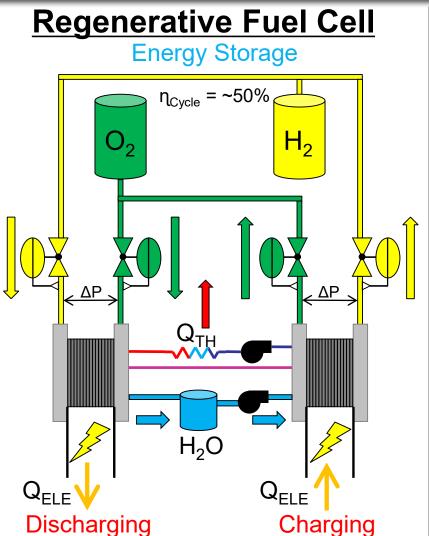
Commodity Generation

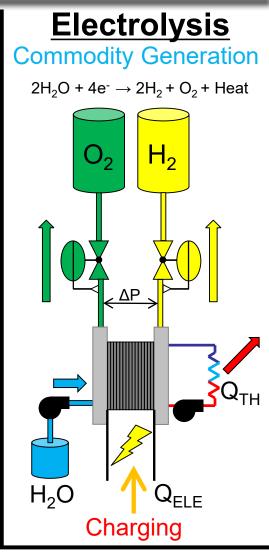
or

Description

- Converts chemical feedstock into useful commodities
- Tied to external energy source


NASA Applications:


Life-support, ISRU


- Oxygen Generation
- Propellant Generation
- Material Processing

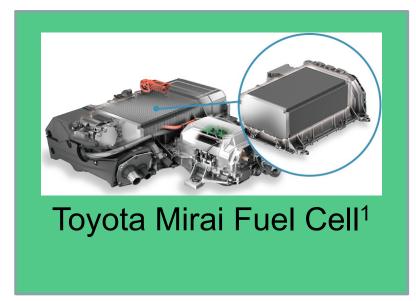
Definitions: Types of Aerospace Fuel Cell Systems

Regenerative Fuel Cell = Fuel Cell +

Interconnecting Fluidic System

+ Electrolysis

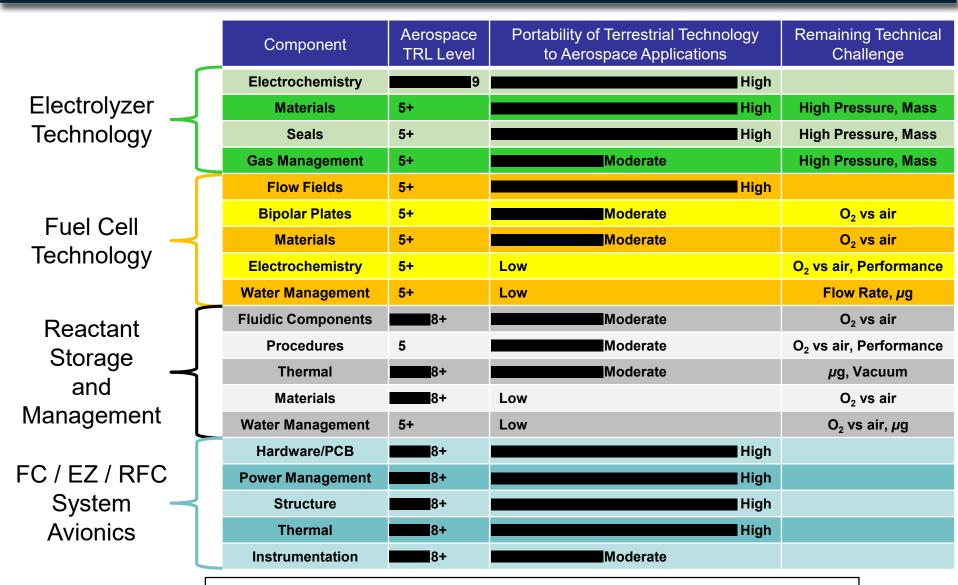
Comparison of Fuel Cell Technologies


Aerospace

<u>Differentiating Characteristics</u>

- Pure Oxygen (stored, stoichiometric)
- ➤ Water Separation in µg

Terrestrial


Differentiating Characteristics

- Atmospheric Air (conditioned, excess flow)
- High air flow drives water removal

Fluid management issues and environmental conditions make aerospace and terrestrial fuel cells functionally dissimilar

Portability of Terrestrial Technology to Aerospace Applications

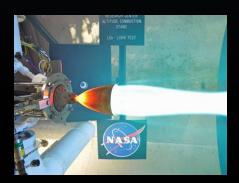
NOTE: Not all relevant technologies exist within the same application. Elements of multiple terrestrial applications are required to meet various NASA mission requirements.

RESEARCH ACTIVITIES

NASA Applications benefitting from Electrochemistry

Power Generation: Fuel Cells

- Electrification of Aircraft
- High-power rovers
- Entry/Descent/Landing (EDL)
- Upper Stage Platforms/Long loiter systems


Commodity Generation: Electrolysis

- ECLSS Oxygen Generation
- ➤ ISRU Propellant Generation
- ISRU Reduction fluids for Material Processing and Fabrication

Energy Storage: Regenerative Fuel Cell

- Lunar Surface Systems
- Lunar Landers / Rovers
- HALE Un-crewed Aerial Systems (UAS)

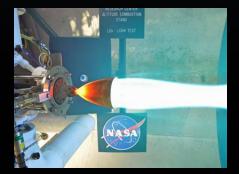
NASA Applications researching Electrochemical Systems

Power Generation: Fuel Cells

- Electrification of Aircraft
- High-power rovers
- Entry/Descent/Landing (EDL)
- Upper Stage Platforms/Long loiter systems

Commodity Generation: Electrolysis

- ECLSS Oxygen Generation
- ➤ ISRU Propellant Generation
- ➤ ISRU Reduction fluids for Material Processing and Fabrication


Energy Storage: Regenerative Fuel Cell

- Lunar Surface Systems
- Lunar Landers / Rovers
- HALE Un-crewed Aerial Systems (UAS)

Legend

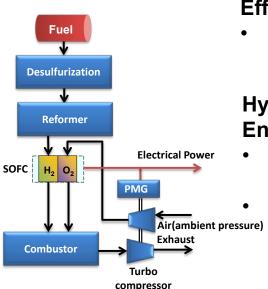
- Hardware Development
- Analytical Development
- Recent work not funded this Fiscal Year

POWER GENERATION

Oxidizer

- + Fuel
- + Electrochemical Reaction

Electrical Power



Power Generation: Fuel Cells Electrification of Aircraft

- Convert experimental X-57 to an electric aircraft
- Integration of key technologies to yield compelling performance to early adopters
 - Useful payload, speed, range for point-to-point transportation
 - Energy system that uses infrastructure-compatible reactants, allowing for immediate integration
 - High efficiency for compelling reduction in operating cost
- Early adopters serve as gateway to larger commercial market

High-Performance Baseline

- 160-190 knots cruise on 130-190kW
- 1100+ pounds for motor & energy system

Efficient Powertrain

 Turbine-like power-to-weight ratio at 90+% efficiency

Hybrid Solid Oxide Fuel Cell Energy System

- >60% fuel-to-electricity efficiency
 - Designed for cruise power; overdrive with moderate efficiency hit at takeoff and climb power

Primary Objective: **Demonstrate a 50% reduction in fuel cost** for an appropriate light aircraft cruise profile (payload, range, speed, and altitude).

Power Generation: Fuel Cell Analytical Activities

High Power Fuel Cells

- ◆ Concept: Crewed transit vehicles, crewed rovers, or rovers with energyintense experiments
- ◆ Application Power: 1 kW to >10 kW
- ◆ Future activities: Laboratory testing of next-generation air-independent stacks ranging from 250 W to 1.2 kW on pure and propellant-grade reactants
- ◆ Special Notes: Recent advances demonstrated autonomous operation and tolerance to vibration loads at launch levels

Entry Descent and Landing (EDL)

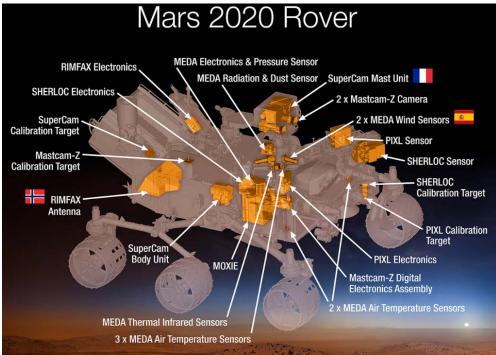
- ◆ Concept: Utilize excess propellant to provide electrical power from Mars orbit insertion through descent, landing, and start-up of primary surface power system
- ◆ Application Power Level: ~34 kW
- ◆ Future activities: Laboratory evaluation of pre-prototype sub-scale fuel cell stack operating on O₂/CH₄

COMMODITY GENERATION

Feedstock Material

- + Electrical Power
- + Electrochemical Reaction

Useful Products for other processes


Commodity Generation: Oxygen

- Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE)
 - Flight demonstration experiment as a part of the Mars 2020 rover mission
 - Generates gO₂ from CO₂ in Mars atmosphere (~1% scale) using Solid Oxide Electrolysis (SOE)
 - Proof-of-concept for generating propellant oxygen for Mars Ascent Vehicle (MAV) or breathing oxygen for astronauts

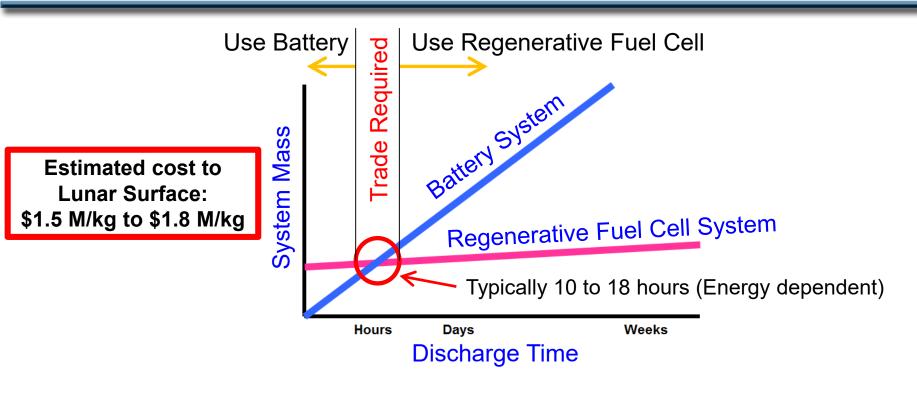
Oxygen Generator Assembly (OGA)

- ECLSS recovers ~ 90% of all water
- Existing technology on-board the ISS since 2008
- Advancing towards a smaller and lighter-weight version for scheduled upgrade in FY21
- Hazard evaluation testing at WSTF

Flight-qualified High Pressure electrolysis

- ECLSS systems to generate 3,000 psi gO₂ by FY24
- Evaluating existing system modifications to maintain mass while increasing generation pressure
- Investigations into conserving gH₂ by-product

ENERGY STORAGE


Fuel Cell System

- + Electrolyzer System
- + Interconnecting Fluidic System

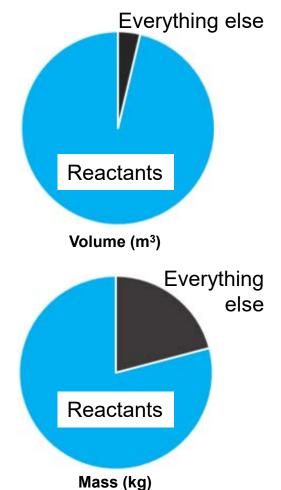
Regenerative Fuel Cell

Energy Storage: Battery vs. RFC

Energy Storage Options for 300 W_{ele} Lunar Surface System By Location

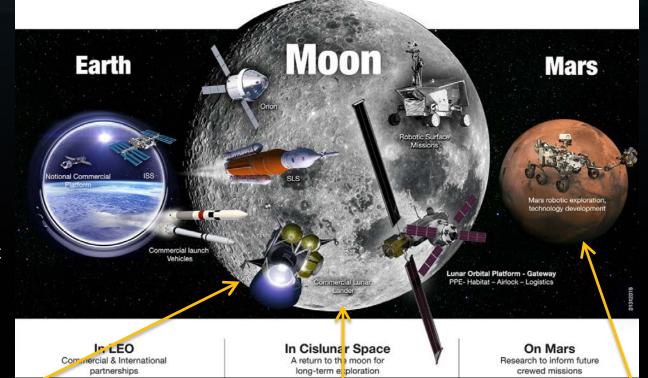
Lunar Site	Shaded Period	Energy Storage			\$ Savings @ \$1.5 M/kg	
	hours	kW•hrs	kg	kg	\$М	
South Pole	73	22	137	40	\$145.5	
Equator	356	107	668	194	\$711	
Lacus Mortis (45° N)	362	109	679	197	\$723	

Energy Storage: Regenerative Fuel Cell Trade Studies


Regenerative Fuel Cell (RFC) Model

- Developed detailed RFC integrated system model to conduct sensitivity studies and mission trades
- Conducted parameter sensitivity study
 - Location primary parameter
 - Round-trip efficiency dominant metric
- Compared Solid Oxide and PEM chemistries
 - SOE not feasible for high pressure gas storage
 - SOFC limits electrical slew if sole power source
- Rotating components fail at a higher rate than electrochemical hardware

Crewed Surface Outpost Trade Study Results


- System development at low TRL
- Location determines required energy storage which sizes RFC
- PEM-based RFC near-term solution for Lunar base
- Burdened² RFC could achieve up a specific energy to 510 W•hr/kg

10 kW PEM RFC Energy Storage System for Equatorial Lunar Outpost

Review



Electrified Aircraft Primary Power

7 ...

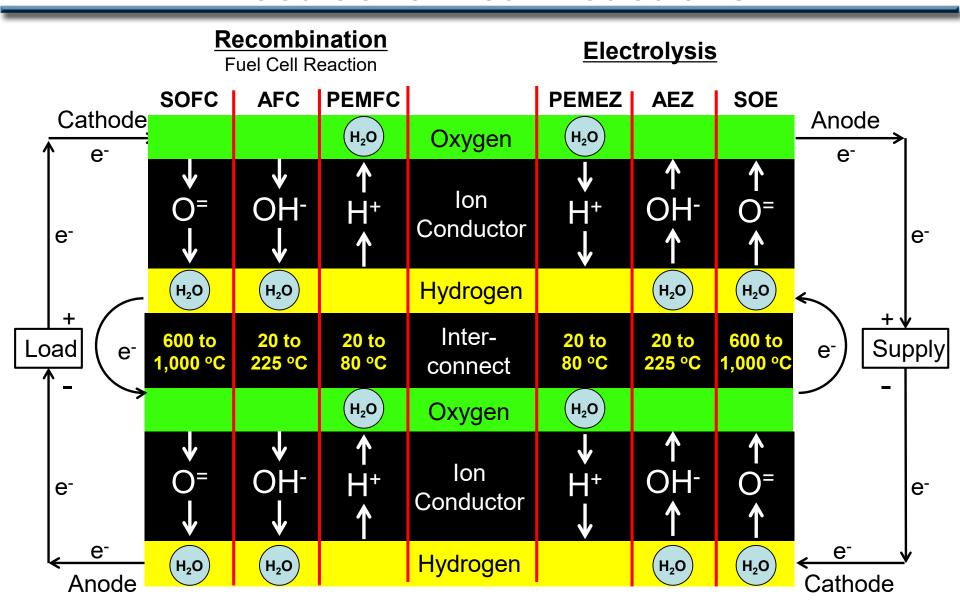
Landers
Primary Power

Lunar Outposts Energy Storage

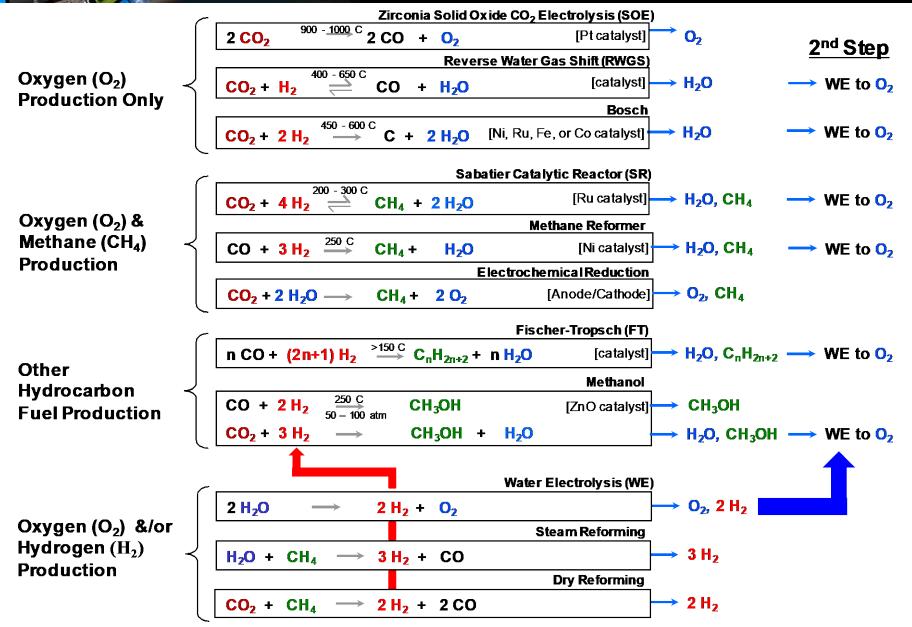
Martian Outposts and Rovers
Primary Power
Energy Storage
Commodity Generation

www.nasa.gov

BACK-UP SLIDES


Summary of Applicable Electrochemical Chemistries

	Low Temperature		Moderate Temperature		High Temperature	
Cell Type	Proton Exchange Membrane (PEM)	Alkaline (AFC)	Alkaline (AFC)	Phosphoric Acid (PAFC)	Molten Carbonate (MCFC)	Solid Oxide (SOFC)
Electrolyte	lonic Polymer Membrane	Anionic Polymer Membrane	KOH in asbestos matrix	Phosphoric Acid in SiC structure	Liquid carbonate in LiAlO ₂ structure	Anionic Conducting Ceramic
Operating Temperature	10 – 80 ° C	20 – 70 ° C	70 – 225 ° C	200 – 250 ° C	~650 ° C	600 – 1,000 ° C
Charge Carrier	H+	OH-	OH-	H+	CO ₃ ²⁻	O ²⁻
Load Slew Rate Capability	Very High (> 1k's mA/cm²/s)	High (~ 1k's mA/cm²/s)	High (~ 1k's mA/cm²/s)	High (~ 1k's mA/cm²/s)	Low to Medium (~100's mA/cm²/s)	Low (~10's mA/cm²/s)
Fuel	Pure H ₂		Pure H ₂		H ₂ , CO, Short Hydrocarbons	
Product Water Cavity	Oxygen	Hydrogen	Hydrogen	Oxygen	Hydrogen	
Product Water	Liquid Product		Operation defines product water state		Vapor, externally separated	
CO Tolerance	< 2 ppm	< 2 ppm	< 5 ppm	< 50 ppm	Fuel	
Reformer Complexity	Very High	High	High		Minimal	
Aerospace Viability	Promising	TBR (Low TRL)	No longer in production	Not Viable	Not Viable	Promising
Terrestrial Availability	High (Increasing)	Developmental (Increasing)	N/A	Moderate (Stable)	Moderate (Increasing)	High (Increasing)
Terrestrial Markets C = Commercial I = Industrial R = Residential	Transportation, Logistics, Stationary Power (C, I, & R)	Transportation, Logistics (C)	N/A	Stationary Power (C)	Co-generation and Stationary Power (C & I)	Co-generation and Stationary Power (C, I, & R)


NASA

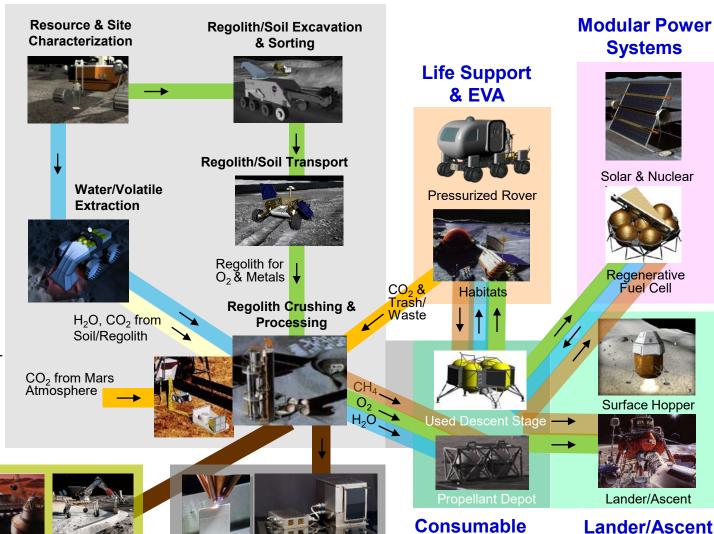
Electrochemical Reactions

The Chemistry of Mars ISRU

Energy Storage Integrated with Exploration Elements

ISRU Resources & Processing

Modular Power Functions/ Elements


- Power Generation
- Power Distribution
- Energy Storage (O₂ & H₂)

Support Functions /Elements

- ISRU
- Life Support & EVA
- O₂, H₂, and CH₄ Storage and Transfer

Shared Hardware to Reduce Mass & Cost

- Solar arrays/nuclear reactor
- Water Electrolysis
- Reactant Storage
- Cryogenic Storage
- Mobility

Storage

In-Space Construction

Civil Engineering, Shielding, & Construction

Parts, Repair, & Assembly

In-Space Manufacturing