

Regional Hydrogen Infrastructure Panel

Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. Washington, DC June 14, 2018

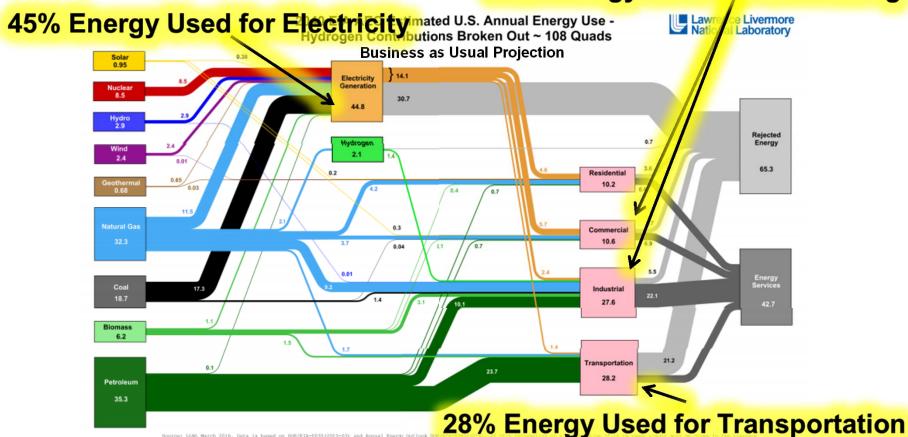
The Northeast Experience

- Direction
- Markets
- Action
- Policy
- Results

Goals

- Clean/Low Carbon Emissions
- Efficiency
- Reliability
- Durability
- Lower Costs
- Clean Energy Jobs

Market Drivers

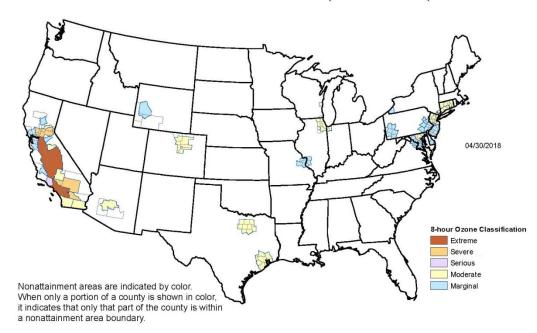

- Emissions Reductions
- Renewable Integration
- Energy Reliability/Resiliency
- Efficiency/Cost
- Economic Incentives

Energy Flow

30% Energy Used for C/I Heating

Electrical Laboratory and the Department of Energy, under whose supplies the work was performed, Districted selectricity production in a calculated as and does not include self-personal Energy to a consumption of remeable resources (i.e., hydro, wind, quothermal and solar) for electricity in NTV-sequivalent values by assuming a typical femali cultivated and the total retail electricity delivered divided by the personal retail retails retail retails retail retails retailed as the total retail selectricity delivered divided by the personal retails retail retails retails retail retail retail retail retail retail retails retail retail retails retail retai

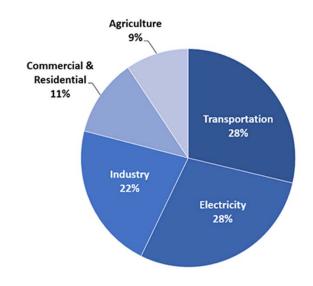
Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.

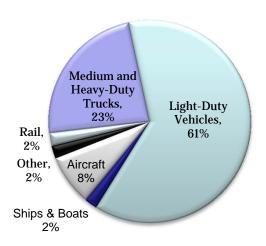


Air Quality (NAAQS) Nonattainment

The transportation sector releases significant quantities of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), (and particulates in the case of diesel vehicles). Vehicles account for over 55 percent of the total NOx emissions in the United States (U.S.)

8-Hour Ozone Nonattainment Areas (2008 Standard)


6


Direction

U.S. Transportation Emissions

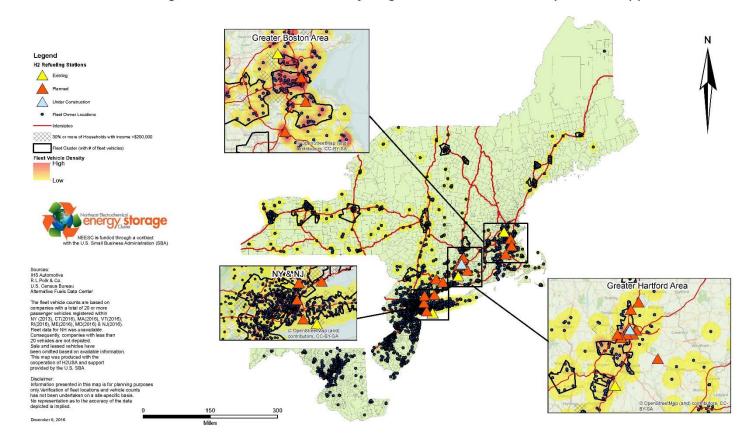
- 28% of GHG emissions come from the transportation sector
- 61% of transportation emissions come from light-duty vehicles

Total U.S. Greenhouse Gas Emissions by Economic Sector 2016

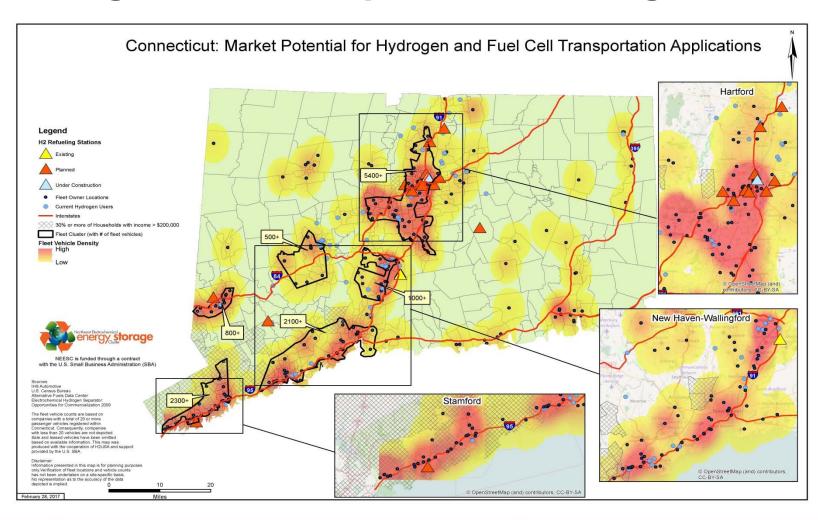
Share of U.S. Transportation Sector Emissions by Source (CO2)

US EPA; GHG Emissions; https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions; 2018

US EPA; "Fast Facts;" https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ONBL.pdf; 2016

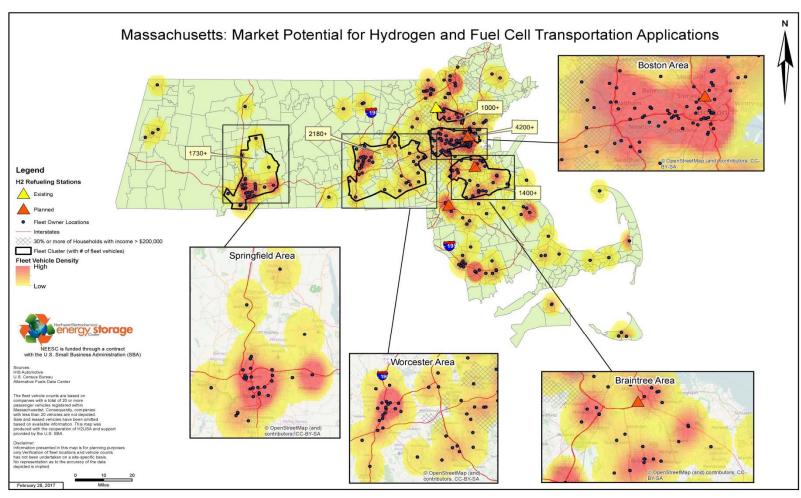

Transportation Market Targets (Fleets)

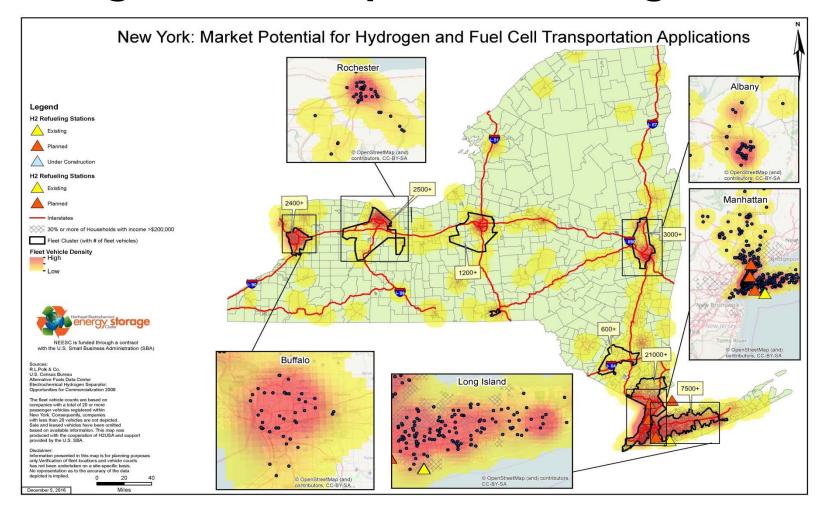
- Fleet Deployment
 - FCEV (Light-Duty)
 - Fuel Cell Electric Buses (FCEB)
 - Specialty Fuel Cell Vehicles
 - Material Handlers
 - Airport Tugs
 - Hydrogen Refueling
 - Hydrogen for Energy Storage

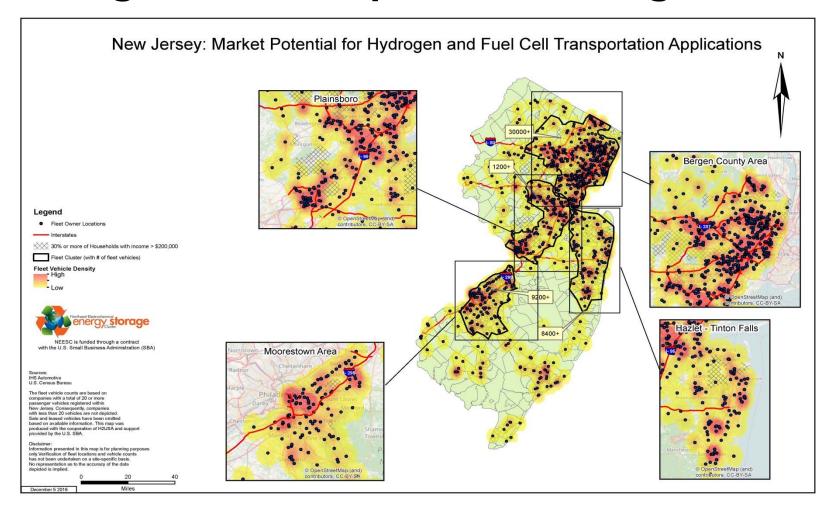


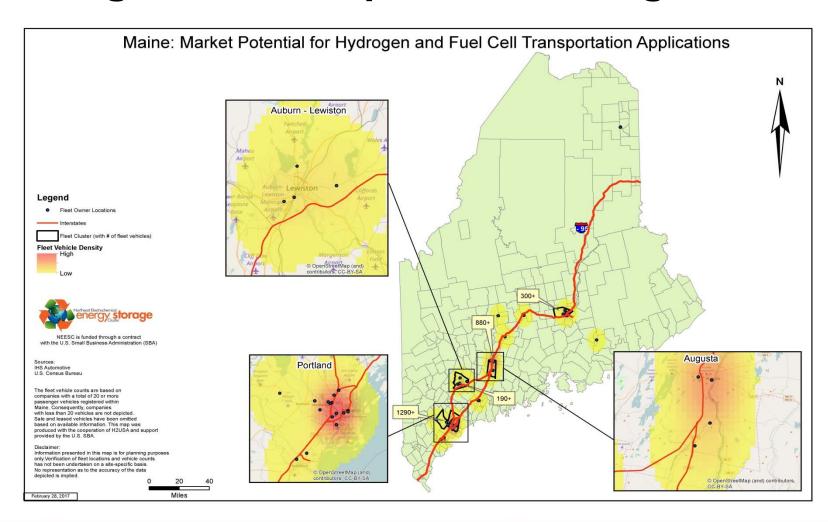
Regional Transportation Targets

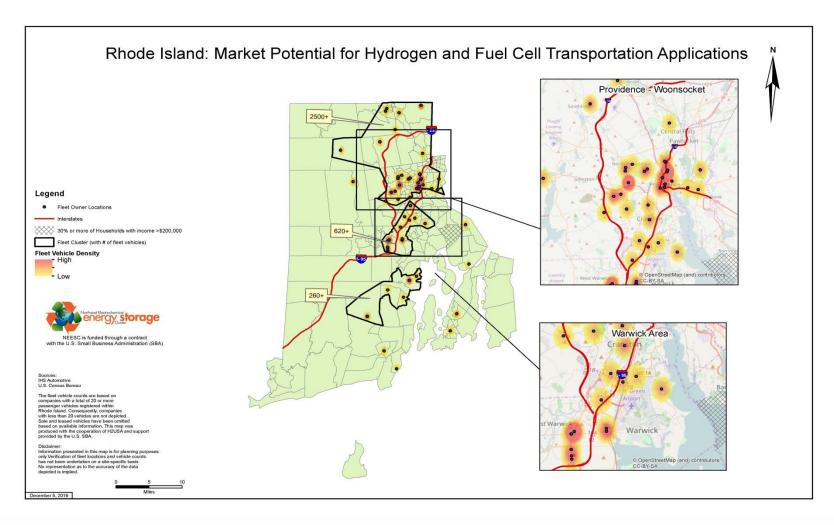
Northeast Region: Market Potential for Hydrogen and Fuel Cell Transportation Applications

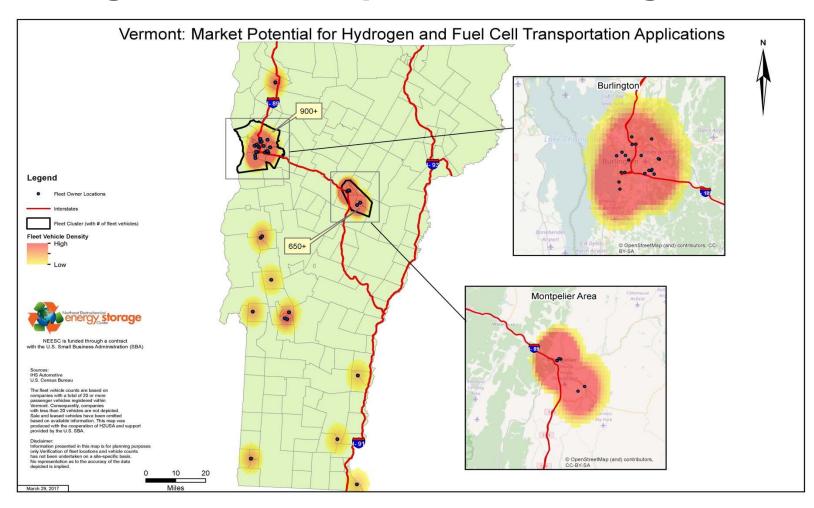


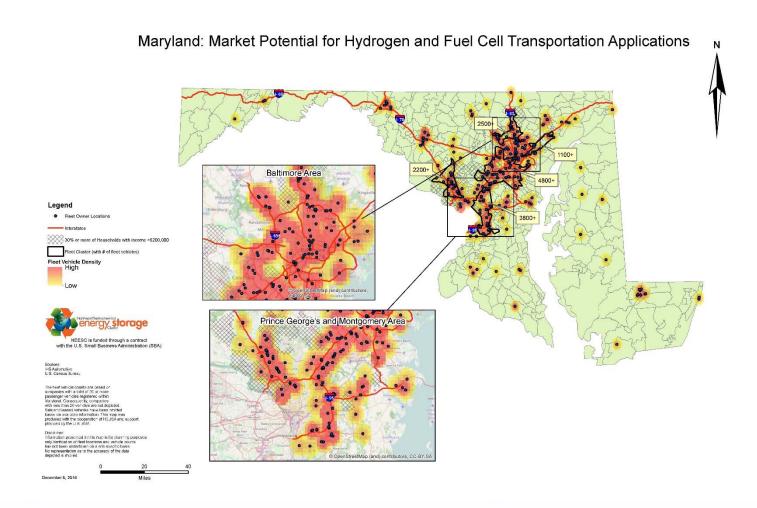












Northeast Fleet Market Opportunities

Regional FCEV and Hydrogen Market Opportunities

State	Total Fleets			Fleet	Supporting			
State	Vehicles	State	Buses	Vehicles	State	Buses	Total	Infrastructure
Maine	2,918	6,960	153	67	70	7	144	1-2
Connecticut	11,725	4,000	921	508	40	43	591	6-7
New York	43,631	18,708	7,458	1851	187	349	2,387	18 – 23
Massachusetts	17,602	10,072	1,796	722	101	84	907	7-9
Rhode Island	3,651	2,026	291	151	20	14	185	1-2
New Jersey	69,194	13,000	2,970	3102	130	139	3,371	31 – 34
Vermont	1,966	2,030	86	72	20	4	96	1-2
New Hampshire	-	2,023	113	-	20	5	25	1-2
Maryland	20,551	8,800	1,780	872	88	83	1,043	8 – 10
Region	171,238	67,619	15,568	7,345	676	728	8,749	74 – 89

- 8,749 Fuel Cell ZEVs (Projected)
 - 7,345 Passenger Vehicles
 - 676 State Passenger Vehicles
 - 728 transit/paratransit buses (FCEB)
- 74 to 89 hydrogen refueling stations

Economy of Scale: Implementation of Roadmap Targets

VW Allocation (2.0L+3.0L)	Allocation for EVSE	CAPEX Application	Cost per Application	Quantity	Cost per state	Subsidy	Cost after Incentives	Cost per State	Cost After Subsidies	Subsidies	
		 Transit buses (FCEB) 	\$1,000,000	43	\$43,000,000	85%	\$6,450,000		¢21 950 202	¢41 909 109	
	Connecticut	FCEV LDV State	\$15,800	48	\$758,400		\$758,400	\$63,658,400			
	FCEV LDV Private	\$15,800	500	\$7,900,000	\$5,000	\$5,400,000	\$03,058,400	\$21,850,202	\$41,808,198		
\$55,721,170	15%	• H ₂ Fueling	\$2,000,000	6	\$12,000,000	23%	\$9,241,802				
		 Transit buses (FCEB) 	\$1,000,000	7	\$7,000,000	85%	\$1,050,000		\$4,547,933		
	Maine	FCEV LDV State	\$15,800	70	\$1,106,000		\$1,106,000	\$11,164,600		\$6,616,667	
		FCEV LDV Private	\$15,800	67	\$1,058,600		\$1,058,600	\$11,104,000		\$0,010,007	
\$21,053,064	15%	• H ₂ Fueling	\$2,000,000	1	\$2,000,000	33%	\$1,333,333				
		Transit buses (FCEB)	\$1,000,000	84	\$84,000,000	85%	\$12,600,000		\$34,082,711	\$76,920,689	
	Massachusetts	FCEV LDV State	\$15,800	101	\$1,595,800		\$1,595,800	¢111 002 100			
		FCEV LDV Private	\$15,800	722	\$11,407,600	\$2,500	\$9,602,600	\$111,003,400			
\$75,064,424	15%	• H₂ Fueling	\$2,000,000		\$14,000,000	27%	\$10,284,311				
	Now Homshire	 Transit buses (FCEB) 	\$1,000,000		\$5,000,000	85%	\$750,000				
New Hamshire	FCEV LDV State	\$15,800	20	\$316,000		\$316,000	\$7,316,000	\$3,066,000	\$4,250,000		
\$30,914,841	\$0	• H ₂ Fueling	\$2,000,000	1	\$2,000,000	0%	\$2,000,000				
		Transit buses (FCEB)	\$1,000,000	14	\$14,000,000	85%	\$2,100,000		\$5,950,128		
	Rhode Island	FCEV LDV State	\$15,800	20	\$316,000		\$316,000	ć10 701 000		¢12.751.672	
		FCEV LDV Private	\$15 ,800	151	\$2,385,800	\$2,500	\$2,008,300	\$18,701,800		\$12,751,672	
\$14,368,858	10%	• H ₂ Fueling	\$2,000,000	1	\$2,000,000	24%	\$1,525,828				
		 Transit buses (FCEB) 	\$1,000,000	4	\$4,000,000	85%	\$600,000		\$3,386,934	\$4,066,666	
	Vermont	FCEV LDV State	\$15,800	20	\$316,000		\$316,000	\$7,453,600			
		FCEV LDV Private	\$15,800	72	\$1,137,600		\$1,137,600	\$7,453,600			
\$18,692,130	15%	• H ₂ Fueling	\$2,000,000	1	\$2,000,000	33%	\$1,333,334				
		 Transit buses (FCEB) 	\$1,000,000	349	\$349,000,000	85%	\$52,350,000				
New York	FCEV LDV State	\$15,800	187	\$2,954,600		\$2,954,600	¢417 200 400	¢104.074.161	¢212 226 220		
		FCEV LDV Private	\$15,800	1851	\$29,245,800	\$5,000	\$19,990,800	\$417,200,400	\$104,974,161	\$312,226,239	
\$127,701,807	127,701,807	• H ₂ Fueling	\$2,000,000	18	\$36,000,000	18%	\$29,678,761				
	New Jersey	 Transit buses (FCEB) 	\$1,000,000	139	\$139,000,000	85%	\$20,850,000		\$130,340,918		
		FCEV LDV State	\$15,800	130	\$2,054,000		\$2,054,000	¢353.065.600		¢121 724 602	
		 FCEV LDV Private 	\$15,800	3102	\$49,011,600		\$49,011,600	\$252,065,600		\$121,724,682	
\$72,215,805	15%	• H ₂ Fueling	\$2,000,000	31	\$62,000,000	6%	\$58,425,318				

Market Planning: Roadmaps (Updated 2018)

- Economic impacts (jobs, revenue, companies)
- Technology, Applications, and Markets
- Stationary and Transportation Deployment Targets
- Policy and Drivers
 - o Job Development
 - Energy Reliability
 - o Storm Preparation
 - Environmental
 - o Carbon Control
 - Energy Cost

Northeast Regional

Regional FCEV Deployment

- Consistent with goals of H2USA, NESCAUM, and the 8 State MOU Action Plan
- Developed for 9 states
 - Northeast states including Maryland
- ZEV Deployment Targets
 - Fleets, early market adopters, hydrogen users, hydrogen refueling, proximity to highways, etc
- Hydrogen Infrastructure
- Policy and Drivers
- Plan Expandable to Include:
 - OEM survey data
 - NREL modeling
 - Subset of National Roadmap
 - Additional states
- State Roadmaps (8 states)

Implementation of Fleet Deployment Plan

Analysis

- Economic analyses/modeling for 2018 (state/regional engagement)
- Market projections and guidance (OEMs/DOE)
- Business Case Analysis for FCEBs, FCEVs and hydrogen fueling
- DOT alternative fuel corridor designation
- 8-State "ZEV" MOU (FCEV and H2 refueling)

Financing

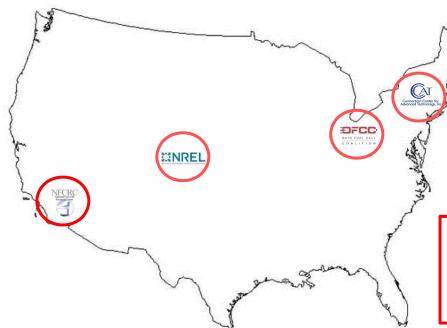
- H₂ infrastructure (financing and development models)
- VW Settlement, FTA, EPA DERA, States' resources

Coordination for Deployment (public/private partnership)

- State RFPs (State Roadmaps)
- Safety Reviews / Education and Awareness (Hydrogen Safety Panel)
- Regional Technical Exchange Centers

Hydrogen Safety Panel

- Safety reviews
- Safety guidance
- Project design and safety plans
- Safety knowledge and best practices
- Incident investigations



National Technical Exchange Centers

- Supply Chain Database
- Supply Chain Exchange
- Standardization

PARTNERS/COLLABORATORS

- Ohio Fuel Cell Coalition (OFCC)
- National Renewable Energy Lab (NREL)
- National Fuel Cell Research Center (NFCRC) at UC Irvine
- Connecticut Center for Advanced Technology (CCAT)

Policy

States Transportation Policy Summary

State Energy Policy/Incentives for ZEV	Tran	spor	tatior	 1	•		•		
	ME	NH	VT	MA	RI	СТ	NY	NJ	MD
Zero Emission Vehicle (ZEV) Program (FCEV/H ₂ Infrastructure)									
ZEV Purchase Target for State Government Fleets (TBD)									
Purchase Incentives/"Point-of-Purchase" Rebates									
Fuel Incentives									
Time of Day Rates/Variable Peak Pricing									
Public/Private Infrastructure Partnership									
Fuel Efficiency Standard (Private/State Fleets)									
Refueling Infrastructure Incentives									
REC Available for Renewable H ₂									
Tax Incentives									
HOV Lanes and Parking Incentives									
One Stop Regulatory Approval									
Identified State "Point" Person									
NEESC Development Plan Market	Pote	ential							
	ME	NH	VT	MA	RI	СТ	NY	NJ	MD
Stationary Fuel Cell (MW, low/high range)	87	74	58	250	52	170	1,131	214	
Transportation FCEV (near-term number of vehicles)	137	20	92	823	171	548	2,038	3,232	960
Transportation Fuel Cell Electric Bus (near-term number of vehicles)	7	5	4	84	14	43	349	139	83
Refueling Stations (low/high range)	1/2	1/2	1/2	7/9	1/2	6/7	18/23	31 34	8 10

Results

Summary

- Direction/Goals
- Market/Target
- Action/Implementation
- Policy/Incentives
- Results/Public Value

 16+ stations planned/existing in the Northeast US

25

Joel M. Rinebold Connecticut Center for Advanced Technology

<u>jrinebold@ccat.us</u>

(860) 291-8832

www.ccat.us