Demonstration of Fuel Cell Auxiliary Power Unit (APU) to Power Truck Refrigeration Units (TRUs) in Refrigerated Trucks

Kriston Brooks, PNNL (PM, Presenter) Gus Block, Nuvera Fuel Cells Thomas McCartney, Thermo King Mauricio Blanco, Ballard Power Systems Sabina Russell, Zen Clean Energy David Kiefer, Carrier Transicold Elizabeth Fretheim, Walmart *June 13, 2018*

Project ID# MT014

PNNL-SA-134031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: April 2013
- Project End: March 2018
- Percent complete: 100%

Barriers Addressed by This Project

- B. High hydrogen fuel infrastructure capital costs
- E. Lack of life cycle cost and performance data to demonstrate low investor risks
- F. Inadequate user experience for fuel cell applications

Budget

- FY16/17 DOE Funding: \$0K
- Previous DOE Funding: \$2M

Allocation of Funding	Spent to Date
DOE Funding for Subcontracts	\$1,018K
Contractor In-Kind Cost Share	\$853K
Remaining Commitments	\$0K
PNNL Expenditures	\$230K

Partners

Role	Nuvera Team	Ballard Team
Fuel Cell/ Integration	Nuvera	Ballard
TRU Producer	Thermo King	Carrier
Business Case	Thermo King	Zen
Demonstration		Walmart

Relevance: Project Purpose

Overall Objective: To demonstrate the viability of fuel cellbased Transport Refrigeration Units (TRUs) for refrigerated Class 8 trucks using demonstrations and business case development.

Barriers Addressed on This Project

- B. High hydrogen fuel infrastructure capital costs
 - Provide DOE funding with 50% cost share to support the demonstrations
- E. Lack of life cycle cost and performance data to demonstrate low investor risks
 - Develop business case with value proposition analysis and total cost of ownership modeling
 - Evaluate demonstration results and share with industry
- F. Inadequate user experience
 - Perform demonstration in real world application
 - Develop safety plan to address operations and refueling
 - Involve primary TRU companies—Thermo King/Carrier Pacific Northwest

NATIONAL LABORATORY

Relevance: Where does it make most sense?

- "Hub and Spoke" Food Distribution Centers where single H₂ source can supply all vehicles
 - Return to same distribution center to refuel (preferably every day)
- Hydrogen already on site for refueling fuel cell forklifts—safety and regulatory issues addressed
 - Larger H₂ usage and outdoor refueling does not require major infrastructure modifications
- Government regulations and incentives drive the need for alternatives to diesel TRUs (e.g. anti-idling laws, noise, emissions)
- Successful replacement of diesel engine (power, mass, volume)
- Acceptable Economics (cost of diesel, H2, fuel cell, power electronics

Approach

Develop and demonstrate two fuel cell systems in commercial operations

- Assess the system performance
- Analyze its market viability

Accomplishments Summary of Accomplishments

Phase	Accomplishment	Nuvera	Ballard
	Finalized Business Case	Yes	FY17
Phase 1	Prepared Safety Evaluations	Yes	FY17
	Finalized System Design	Yes	FY17
	Phase I Go/No-Go Decision	Yes	No
	Fabricated Fuel Cell System	Yes	
Phase 2	Integrated with Power Electronics	FY17	NI/A
	Performed 8 Hour Demonstration	FY18	IN/A
	Phase II Go/No-Go Decision	No	
Phase 3	800-1000 hour Commercial Demonstration	N/A	

Accomplishments Thermo King/Nuvera Business Case: <u>Net Present Value of fuel cell- vs. diesel</u>-powered TRU

With ITC										
	TRU Incremental									
Hydrogen		Cost	Diesel \$3.00		Diesel \$4.00		Diesel \$6.00		Diesel \$8.00	
Hydrogen \$2.50	\$	11,550	\$	2,567	\$	17,576	\$	47,594	\$	99,865
Hydrogen \$4.00	\$	11,550	\$	(19,575)	\$	(3,967)	\$	26,051	\$	78,323
Hydrogen \$6.00	\$	11,550	\$	(34,090)	\$	(34,090)	\$	(4,072)	\$	48,199
Hydrogen \$8.00	\$	11,550	\$	(63,614)	\$	(63,614)	\$	(33,596)	\$	18,675
Hydrogen \$10.00	\$	11,550	\$	(93,167)	\$	(92,923)	\$	(62,905)	\$	(10,634)
Hydrogen \$12.00	\$	11,550	\$	(122,687)	\$	(122,687)	\$	(92,669)	\$	(40,398)
Hydrogen \$2.50	\$	16,800	\$	(2,683)	\$	16,568	\$	52,149	\$	87,730
Hydrogen \$4.00	\$	16,800	\$	(24,825)	\$	4,047	\$	39,628	\$	75,209
Hydrogen \$6.00	\$	16,800	\$	(39,340)	\$	(27,240)	\$	8,342	\$	43,923
Hydrogen \$8.00	\$	16,800	\$	(68,864)	\$	(58,526)	\$	(22,945)	\$	12,637
Hydrogen \$10.00	\$	16,800	\$	(98,417)	\$	(89,813)	\$	(54,231)	\$	(18,650)
Hydrogen \$12.00	\$	16,800	\$	(127,937)	\$	(121,099)	\$	(85,518)	\$	(49,936)
Hydrogen \$2.50	\$	22,050	\$	(7,933)	\$	7,076	\$	37,094	\$	89,365
Hydrogen \$4.00	\$	22,050	\$	(30,075)	\$	(14,467)	\$	15,551	\$	67,823
Hydrogen \$6.00	\$	22,050	\$	(44,590)	\$	(44,590)	\$	(14,572)	\$	37,699
Hydrogen \$8.00	\$	22,050	\$	(74,114)	\$	(74,114)	\$	(44,096)	\$	8,175
Hydrogen \$10.00	\$	22,050	\$	(103,667)	\$	(103,423)	\$	(73,405)	\$	(21,134)
Hydrogen \$12.00	\$	22,050	\$	(133,187)	\$	(133,187)	\$	(103,169)	\$	(50,898)

Higher diesel and lower H₂ cost provide positive NPV

Assumptions:

- 24 kW (net) fuel cell power system
- 100% efficiency improvement over diesel ICEs
- 12 year trade cycle
- Baseline Thermo King Precedent S-600 TRU price: \$23,500
- 7 > 2000 operating hours per year

- 75% of hauling at fresh continuous cycle sentry (+35° F)
- 25% of hauling at deep frozen (-20° F)
- Diesel ICE maintenance costs: \$6,566
- Fuel cell system maintenance costs: \$2,144
- "Marginal" value proposition defined as \$0 to -\$30,000 NPV

Accomplishments Carrier/Walmart/Zen/Ballard Business Case: Net Present Value of fuel cell- vs. diesel-powered TRU

Hydrogen	TRU Incremental		Diesel (\$/gallon)							
Cost	Cost		(with ITC)							
(\$/kg)		\$2.00	\$3.00	\$4.00	\$5.00	\$6.00	\$7.00	\$8.00	\$9.00	\$10.00
\$2.00	\$34,000	\$ 2,820	\$ 22,789	\$ 42,759	\$ 62,729	\$ 82,699	\$102,669	\$122,639	\$142,609	\$162,578
\$3.00	\$34,000	\$(12,542)	\$ 7,428	\$ 27,398	\$ 47,338	\$ 67,339	\$ 87,307	\$107,277	\$127,247	\$147,217
\$4.00	\$34,000	\$(27,903)	\$ (7,933)	\$ 12,037	\$ 32,006	\$ 51,976	\$ 71,946	\$ 91,916	\$111,886	\$131,856
\$5.00	\$34,000	\$(43,265)	\$(23,295)	\$ (3,325)	\$ 16,645	\$ 36,615	\$ 56,585	\$ 76,554	\$ 96,524	\$116,494
\$6.00	\$34,000	\$(58,626)	\$(38,656)	\$(18,686)	\$ 1,284	\$ 21,253	\$ 41,223	\$ 61,193	\$ 81,163	\$101,133
\$7.00	\$34,000	\$(73,987)	\$(54,018)	\$(34,048)	\$(14,078)	\$ 5,892	\$ 25,862	\$ 45,832	\$ 65,801	\$ 85,771
\$8.00	\$34,000	\$(89,349)	\$(69,379)	\$(49,409)	\$(29,439)	\$ (9,469)	\$ 10,500	\$ 30,470	\$ 50,440	\$ 70,410

Assumptions:

- 20 kg fuel tanks
- 10 year trade cycle
- 2500 operating hours per year

- Diesel ICE maintenance costs: \$21,250
- Fuel cell system maintenance costs: \$12,750
- Carbon credit price \$13/tonne CO₂e

Although different assumptions, Nuvera and Ballard analyses are similar

Accomplishments Carrier/Walmart/Zen/Ballard Business Case:

The two most significant contributors are capital cost and fuel cost.

- Baseline Assumptions:
- \$3.27/gallon diesel and \$4/kg H2
- 1. kg/hr fuel consumption
- \$42,000 FCS + tank

Accomplishments Business Case Common Outcomes

- Positives
 - Availability of hydrogen infrastructure at major grocery distribution centers
 - Technology shift towards all-electric TRUs
 - Federal, state and local emissions regulations of diesel engines
 - Noise restrictions in sensitive or densely populated areas
 - Diesel fuel prices and uncertainty of future diesel prices, coupled with increasing availability and economic viability of natural gas fuel for transportation
 - Environmental and sustainability initiatives of industry leaders

Accomplishments Business Case Common Outcomes

Challenges

- Need lower H₂ cost for positive NPV
- Limited hydrogen infrastructure that does not accommodate Class 8 tractor trailers
- Fuel cell TRU results in added system weight and volume
 - Ballard estimate ~600 lbs
- Lack of regulatory drivers: Work-arounds are possible for federal and state emissions regulations of diesel engines
 - EPA: Stay below 25 hp cut-off for stringent PM-10 standards
 - California: Retire, add filter or sell out of state after 7 years

Accomplishments System Designs

- Nuvera System
 - Orion Gen 2 fuel cell
 - 25 kW fuel cell
 - Minor hybridization
 - FC mounted under trailer
 - Diesel back-up during demo
 - 10 kg H₂ Tank
 - Power Electronics
 - DC-DC Boost Converter
 - Inverter

- Ballard System
 - FCvelocity-9SSL fuel cell
 - 20 kW fuel cell
 - Non-hybrid architecture
 - FC mounted under trailer
 - Diesel back-up during demo
 - 20 kg H₂ Tank
 - Power Electronics
 - DC-DC Boost Converter
 - VFD 480 VAC/3 phase

Accomplishments

Nuvera System Laboratory Demonstration

Accomplishments **Eight Hour Demonstration Results:** Temperature/Power

Results Setpoint reached and maintained

Power within the range of previous Precedent C600 unit results at Thermo King

- Setpoints = 1°C and -20°C
- Average Inverter Power = 12.25 and 12.11 kW
- Peaks correspond to defrost cycles

Accomplishments **Eight Hour Demonstration Results:** System and Stack LHV Efficiency

Results

DOE's 80 kWe fuel cell technical target 2020 is 65% peak energy efficiency.

Nuvera average FC efficiency is 58%.

 System efficiency includes air compressor, water pump, sensors, power electronics

15

Accomplishments Nuvera Power Electronics Integration

Responses to Previous Year Reviewer's Comments

FY17 Reviewer Comment	FY18 Response to Comment
"need to produce 480V three phase poweris driving cost/mass into the system." "battery box replacement may have hurt cost and mass."	The power electronics for the DC to AC conversion has impacted the system mass and cost. OEMs agree that the commercial product would have a DC motor.
"an actual demonstration would have gone faster if the demonstration partner had been on board at the beginning."	HEB was the Nuvera demonstration partner during most of the development but withdrew from the project due to the unfavorable value proposition.
"More parametric measures are needed on the impact of several fuel costs."	Diesel TRUs are the incumbent technology. As a result, only diesel costs are compared to hydrogen.
"thought should be given to doing an emissions comparison with diesel. Perhaps there is also a low-carbon fuel standard opportunity."	Cost model included costs associated with emissions compliance for Tier IV diesel engines and carbon credit prices.

Collaborations

Part	ner	Project Roles
DO	E	Sponsorship, Steering
PN	NL	Management and Coordination, Data Collection and Analysis, Business Case Development
NUVERA	BALLARD	Fuel Cell Supplier, System Integrator
	Carrier	Integration of APU with TRU
		Business Case Development
None	Walmart 🔀	Demonstration Partner

Special Thanks

Pete Devlin, DOE-EERE Fuel Cells Technology Office

_ ...

Remaining Challenges and Barriers

- Technology is viable but need market pull to bring the system to market
 - Need to identify a sufficiently large niche market to justify product development
 - Federal and local incentives/regulations need to be more favorable
 - System cost lifecycle needs to be more competitive
 - Fuel cell, power electronics, tankage
 - Diesel and H₂ prices
 - Challenges with hydrogen infrastructure
 - Current refueling stations do not accommodate tractor trailers
 - System mass may be too high

Partners understand and remain interested in technology but waiting for more favorable commercialization conditions

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Future Work—Remainder of FY18

- Complete final report summarizing Nuvera and Ballard results
- Identify niche markets and commercial partners with improved business case to sell the OEMs on the technology
- Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

- Two major US OEMs for Transport Refrigeration Units understand the technology and participated in the development of the business cases
- Identify partners and niche markets that align with a favorable pathway to commercialization

Project Summary

Relevance	Demonstrate the technical and commercial viability of fuel cell-based Transport Refrigeration Units (TRUs) for refrigerated Class 8 trailers.
Approach	 Demonstrate fuel cell system in commercial applications Assess the system performance Analyze its market viability
Technical Accomplishments and Progress	 Nuvera successfully performed an 8 hour integrated test in the laboratory Nuvera completed the Phase II Go/No-Go Decision Ballard developed system design and completed the Phase I Go/No-Go Decision
Collaborations	 Nuvera and its team: Thermo King Ballard and its team: Carrier, Zen Energy Solutions, Walmart
Proposed Future Research	Complete final reportIdentify niche markets with improved business case

Kriston Brooks

Project ID# MT014

(509) 372-4343 kriston.brooks@pnnl.gov

Contact:

Kriston P Brooks The State of t

