

Electrochemical Compression

2018 DOE Hydrogen & Fuel Cells Program Annual Merit Review Meeting

PI: Monjid Hamdan

Vice President of Engineering

Giner ELX, Inc.

89 Rumford Ave. Newton, Ma. 02466 June 14th, 2018 Project ID: PD136

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: Oct. 1, 2016
- Program Novation: Apr.-Dec., 2017
- Project End: June 30, 2020
- Percent Complete: 21%

Budget

- Total Project Budget: \$3.52MM
 - **Total Federal Share:** \$2.81MM
 - **Total Recipient Share:** \$0.71MM
 - **Total DOE Funds Spent*:** \$0.46MM
 - * As of 3/31/18

Technical Barriers (Advanced Compression)

B. Reliability and Costs of Gaseous Hydrogen Compression

Technical Targets: Small Compressors: Fueling Sites (~100 kg H₂/hr)¹

Characteristics	Units	2015 Status	2020 Target
Availability	%	70-90	85
Compressor Specific Energy	kWh/kg	1.60 ²	1.60 ²
Uninstalled Cap. Cost ²	\$	275k	170k
Annual Maintenance	% of Capital Cost	8	4
Lifetime	Years		10
Outlet Pressure Capability	bar	950	950

¹ FCTO Multi-Year Research, Development, and Demonstration Plan (2015). ² 100-bar delivery/Commercial mechanical compressors are >6-8 kWh/kg (@7-bar delivery).

Partners

- National Renewable Energy Laboratory (National Lab) Membrane/System Validation
- **Rensselaer Polytechnic Institute (Academic)**
- Gaia Energy Research Institute (Private)
- Giner, Inc.

Collaborations

- **TÜV SÜD America**
- Intertek

- Membrane Development
- Techno-Economic Analysis
- System Development & Assy
- Codes/Stack Certification
- Codes/System Certification

Relevance

Overall Project Objectives

 Develop/demonstrate electrochemical hydrogen compressor (EHC) to address critical needs of lower-cost, higher efficiency, and improved durability

FY 18 Objectives

- Fabricate Aromatic membranes with enhanced properties for use in EHCs
 - Evaluate Aromatic membranes at 5,000 psi (350 bar)
- Improve EHC water and thermal management
 - Development of Water Management Membranes (WaMM) for use in EHCs
 - □ Engineer stack & cell components for high pressure operation
- Optimize stack hardware and demonstrate cell performance ≤ 0.250 V/cell at current densities ≥1,000 mA/cm²

Impact

- Low cost, reliable, high pressure hydrogen to support FCEV penetration
 - Compressor reliability is a major concern for enhanced use of high pressure hydrogen systems and threatens the deployment of a hydrogen infrastructure

High Pressure Stack

EHC Background

EHC: Benefits & Uses

- Solid State, No moving parts
 - Improves downtime
- No membrane degradation (no O₂)
 - Enables use of low-cost Aromatic membranes
- Cross-cutting technology
 - □ Fuel Cells, Electrolyzers
- Alternative applications:
 - □ Home/Roadside-Refuelers
 - □ Hydrogen Purification (NG appl.)
 - Hydrogen Circulation (Pumps, Refrigeration)
 - \Box H₂ Purity (Sensor Applications)
 - Power Generation (Reversible)

Efficient, stable, high pressure, & high current EHC operation requires:

- Water Management
 - Difficult under varying operating parameters (P_i, P_o, T_i, Current, H₂O_d)
 - Leads to catalyst flooding or membrane dehydration
 - High electro-osmotic drag (EOD) in conventional membranes; 6X higher than can be supplied by humidification

Thermal Management

- □ Limits to operating current density
- Individual cell cooling required
- Mechanical Strength
 - □ Stack hardware, membranes, sealing

Approach: Program Overview

Safety, Cost, Certification

System

GINERELX

Approach: YR1 Tasks & Milestone Progress

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
1	Test Hardware Development	M1.1	Fabricate 50cm ² test hardware for evaluation of HC and WaMM membranes	 Designed & fabricated test hardware to accommodate distributor plate and WaMM 3 sets of hardware delivered to NREL for testing & validation of membrane samples 	100%
2	Hydrocarbon Membrane Fabrication, WaMM Fabrication	M1.2	Synthesis Aromatic membranes with IECs in the range of 1.8–2.6 mmol/g, protonic conductivity >0.1 S/cm, and electro-osmotic requirement <50- 80% than conventional PFSA PEMs Synthesize WaMM with water flux of ≥0.039 g/min-cm ² and conductivity ≥ 1.0 S/cm membrane	 Partially fluorinated Aromatic membranes synthesized (on-going): Conductivity: 0.106 S/cm√ EOD: 50% of PFSA√ IEC: 1.4 / 2.0 mmol/g demonstrated√ Optimize/reduce back diffusion (on-going) WaMM synthesized: Water flux: ≥0.1 g/min-cm² √ Through-plane conductivity: > 1.0 S/cm√ 	75%
	Evaluate Cell Performance	M1.3	Voltage performance 250 mV @ ≥ 1,000 mA/cm² (combined Task 1, 2, & 3)	 EHC cell voltage performance @ 1,000 mA/cm² (300 psig): 170 mV/cell (PFSA) 105 mV/cell (Aromatic), Initiated testing of Aromatic membranes at 5,000 psig 	50%
3	Preliminary Stack Design	M1.4	Complete preliminary design of scaled-up stack (300 cm ²) for 875 bar operation	Initiated	15%
4	Desktop Review of EHC System	M1.5	Complete Desktop Review of EHC system	Intertek 1 st review round complete. Report submitted	50%
Go/I	No-Go Decisio	on Y1	Demonstrate EHC voltage performance of ≤ 250 mV/cell @ ≥ 1000 mA/cm ² in a 50 cm ² stack platform utilizing advanced 'Aromatic' membranes	Successfully operated EHC at 350 Bar ≤ 0.250V @ ≥ 1,000 mA/cm ² Demonstrated Aromatic membrane operation at 0.217V @ 1000 mA/cm ² , 350 bar	\checkmark

Progress- Aromatic Membrane/MEA Development

Hydrocarbon Membranes (BPSH)

- Inexpensive starting materials
- Trade-off between conductivity and mechanical properties
- Reduces gas permeation by 1 order of magnitude
- Reduction in electro-osmotic drag transport

Biphenyl Series Membranes (BP-ArF4, BP-ArSA, BP-SA)

- □ Similar benefits as BPSH, but include:
 - Higher protonic conductivity at lower IEC with lower swelling in water
 - Improved mechanical stability
 - Membrane support structures can be added for increased mechanical stability

MEA Fabrication

Supports

INERELX

MEA Fabrication & Catalyst Deposition at NREL

Addition of Membrane Supports

Progress- Electro-osmotic Drag (EOD)

Need to reduce EOD, maintain water in membrane for high current density operation

- EOD measured via DMFC (NREL):
 - □ PFSA: 4.9 H₂O/H⁺
 - □ BP-Ar: ~ 3.4 H₂O/H⁺
 - 30% lower compared to PFSA
 - 1.0-1.5 H₂O/H⁺ possible with membranes of lower IEC/higher selectivity

0

0

0.1

0.2

Current Density (A/cm²)

0.3

0.4

- EOD testing in EHC indicates 50% reduction
 - Low humidity evaluation

Progress- EHC Cell Performance & Optimization

Progress- EHC Cell Performance @ 350 bar (5,000 psi)

Reducing Back Diffusion (PFSA)

- Membranes modified to optimize (reduce) back diffusion
- H₂ Flux vs. pressure measured at maximum operating temperature (80°C)
- Losses due to back diffusion:

Gas diffusion in modified membranes reduced by > 50% compared to baseline Applicable to Aromatic membranes

GINERELX

Outlet Pressure

Progress- EHC Cell Performance @ 350 bar (5,000 psi)

Aromatic membrane

- Aromatic Membrane (BP-ArF4) meets Milestone target
 - Best performer: 0.217V @ 5,000 psi (350 bar) -NREL MEA
 - Diffusion losses
 - 7% @ 80°C
 (<3% @ 50°C)
 - Not optimized for diffusion!
- BPSH (50% di-sulfone) meets milestone for IEC target (~2.0 mmol/g)
 - MEA developed leak at ~2,500 psi (170 bar) , requires support
- Upcoming tests:
 - Optimization of aromatic membranes to further reduce back diffusion
 - Improving mechanical strength

GINERELX

Outlet Pressure

Progress – Modeling EHC Performance

Progress – Stack, EHC Mass & Energy Balance, 875 Bar

- Based on 1 kg/hr output
 @ 875 bar with best performing membrane
- Operating at highest efficiency point (< 1000 mA/cm²)
- Energy balance accounts for:
 - Nernstian penalty:
 ~1.0 kW_e/kg-H₂ @ 875 bar, 100 bar inlet
 - ~2 kW_e/kg-H₂@
 350 bar, 2 bar inlet
 - Back diffusion: 0.73 kW_e/kg-H₂
- Cell voltage improvement at 875 bar, (100 bar feed)
- Water management
 @875 bar remains to be measured

Governing equations for EHC		350 Bar	875 Bar
Nernst Potential	$V_{Nernst} = V_o + \frac{RT}{2F} ln \frac{Pc}{Pa}$	61 - 66mV (1 ⇔ 350 bar)	30 - 33mV (100 ⇔ 875bar)
iR Drop (0.5A/cm ²)	$V_{iR} = I * R$	86 mV	86 mV
Activation Over Potential	$\eta = \eta_{anode} + \eta_{cathode}$	<1 mV	<1 mV
Total Voltage	$V_{cell} = V_{Nernst} + \eta + V_{iR}$	~0.152	~0.119

Progress - EHC Stack Design & Fabrication

5,000 psi (350 bar)

Modified stack to accommodate Distributor and WaMM. Supported membranes required

Catalyst, Membrane & Cell-Component, Testing & Validation

875 bar Stack Novel Design Features

- Proof pressure design: 20,000 psi (1,400 bar)
- Scale-up active area to 300 cm²
- Utilizing low cost materials: Ti, SS
- Design incorporates use of distributor plates and WaMM
- Enhanced bipolar plate design for 20 ksi capability, reduced part count
- Successfully evaluated cell components to 5,000 psi (350 bar)
- 1400 bar testing upon completion of hardware
- Initial evaluations will be conducted in 50cm² hardware, 875 bar
- Membrane supports for superior creep resistance; operation >2000 psi

Unsupported Membrane* Supported Membrane* *350 bar operation in an Electrolysis cell, 1000 hours

Progress- System Codes & Standards, Certification Review

- Conducted extensive review of EHC system with Intertek
 - System designed to be located in hazardous areas, zoned for Class 1, Div2, Grp B
 - Prior to system and process review, presented Intertek with design concept, layout, and BOP component selections

- □ Completed 'desktop review' of 'NEW' H₂ compression technology w/Intertek
 - Determined appropriated standards, component classifications, and operating requirements
 - Over 20 standards* apply. Can Influences how system is designed
- Program objective: Increase TRL from 3 to 5. Goal: Certification & commercialization of the technology

Projected Compression Cost

H ₂ Compression Cost Contribution	Current Status (\$/kg)
Capital Costs ¹	0.196 ^{①4}
Feedstock Costs ²	0.302 (PFSA) ♣4
Fixed O&M	0.004
Variable Costs	0.001
Total Cost (\$/kg) ³	0.503

¹10 year lifetime, ²Based on electrical cost of \$0.057/kWh & 5.3 kWh/kg, ³Design Capacity: 100 kg-H₂/hr. Assumes large scale production. ⁴Compared to previous year.

Cost Objectives

- \$3.4k/year (O&M) and capital cost of \$170k per compressor
- Economics: determined using PEM-based system cost models
 - Feed Stock, based on Efficiency Range @ 350 bar:
 - 2.7 to 3.7 kWh/kg (Aromatic MEA)
 - 3.1 to 5.3 kWh/kg (PFSA- Mod A)
 - Projected Operating Lifetime: designed to operate for a term of 10 years or more (> 20 years expected)
- Membranes are not expected to degrade due to lack of O₂ in system

CapEx

 Based on 1 A/cm² Operation. Increasing Active Area & Operating Current Density reduces Capex repeating costs proportionally

Collaborations

Giner ELX, Inc. -Monjid Hamdan -Prime	Industry	Stack and system engineering, development, and operation. Fabrication and optimization of catalyst and membrane electrode assemblies. WaMM development and optimization. Testing & validation
National Renewable Energy Laboratory (NREL) -Bryan Pivovar -Subcontractor	National Lab	Membrane and cell component validation. Coordinate stack testing and optimization studies of membranes, cell components & materials. Testing of high-pressure EHC stack and system
Rensselaer Polytechnic Institute (RPI) -Chulsung Bae -Subcontractor	Academia	Development of mechanically-stable Aromatic PEMs which serve as a key material in this project.
Gaia Energy Research Institute LLC (Gaia) -Whitney Colella -Subcontractor	Small Business	EHC stack cost analysis and system-level analysis. Developing EHC cost estimates, techno-economic analysis (TEA), and life cycle assessment (LCA)
Intertek/TUV -Subcontractor	Nationally Recognized Testing Laboratory	Certification for System & Stack
Giner, Inc. -Subcontractor	R&D	System assembly, sub-component fabrication, PLC controls. Includes documentation for certification process

Summary

- Program Novation (Giner, Inc \rightarrow Giner ELX, Inc.)
- Yr1 Milestone Achieved:
- □ Successfully operated EHC at 5,000 psi (350 Bar) \leq 0.250V @ \geq 1,000 mA/cm²
- Demonstrated Aromatic membrane operation at 0.217V @ 1000 mA/cm², 5,000 psi, 35 psi inlet
 - Yr1 Milestone also demonstrated for PFSA membrane
 - Demonstrated pressure ratio of 100, single stage
 - Highest Efficiency for EHC operating at 5,000 psi

Membrane

- Further optimization of membrane
 - Reduced back diffusion by > 50% in PFSA
 - Applicable to Aromatic membranes
 - Achieved further improvements in cell voltage
 - □ Aromatic membrane: Achieved significant improvement in membrane performance
 - Stack Efficiencies to 2.7 kWh_e/kg-H₂ (@ 1,000 mA/cm²)
 - WaMM: fabricated flexible WaMM compatible with high pressure operation
 - No loss in performance when operated at high pressure
 - Significantly improves water management, stabilizes cell voltage

Stack/System Hardware Development:

- Completed preliminary review of EHC System with Intertek
 - Established appropriated standards, component classifications, and operating requirements for certification
- 875+ bar stack design, procurement of components initiated

Future Plans & Challenges (FY2018-19)

Future Plans*

- Membrane: Complete investigation on Aromatic membranes
 - Continue membrane optimization; reduce back diffusion
 - □ Conduct 1,000 hour duration testing
- Stack: Design, fabricate, and test high-pressure 12,688 psi (875 bar) stack hardware
 - □ Initiate 875+ bar testing: in 50 cm² hardware, then 300 cm² hardware
- System: Initiate assembly of prototype system design
 - Complete selection and procurement of system components

Future Challenges

- Increase stack active-area to 300 cm² or larger
 - Also requires scale-up for Aromatic membranes
- Increased operating pressure
 - □ Maintaining seals of stacks at operating pressure of >12,688 psi
- Reduce Stack Costs
 - Unitize cell components (reducing parts/cell)
 - Combine cell components at the production level
 - □ Combine Flow-Distributor and WaMM compartment into single component
 - Investigate techniques to reduce fabrication costs
 - Chemical etching and machining is current solution. Possibility of stamping components
- Embrittlement of cell components
- Effect of H₂ impurities

*Any proposed future work is subject to change based on funding levels