

HydroGEN: Low-Temperature Electrolysis

G. Bender, H.N. Dinh, N. Danilovic, A. Weber

Presenter: Guido Bender, NREL

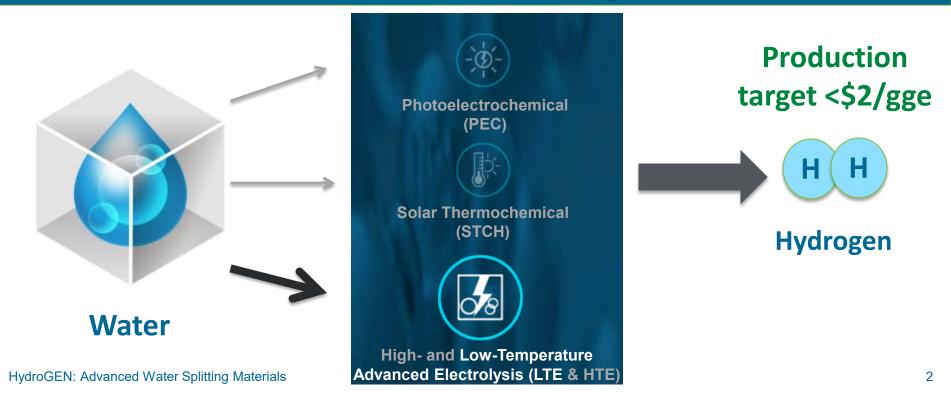
Date: 6/13/2018

Venue: 2018 DOE Annual Merit Review

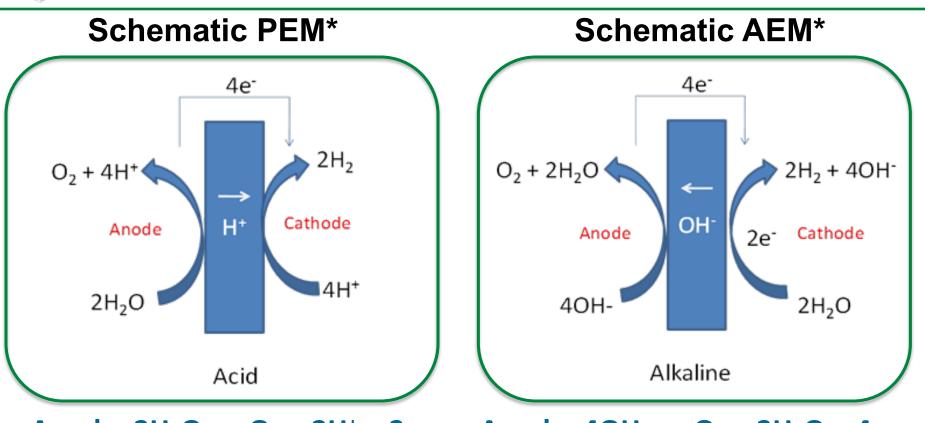
Project ID # PD148A

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Lawrence Livermore National Laboratory



Advanced Water-Splitting Materials (AWSM) Relevance, Overall Objective, and Impact


AWSM Consortium 6 Core Labs:

<u>Accelerating R&D</u> of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

Overview - LTE Technology

Anode: $2H_2O => O_2 + 2H^+ + 2e^-$ Cathode: $2H^+ + 2e^- => H_2$

 Niche Application Deployment Anode: $4OH^- => O_2 + 2H_2O + 4e^-$ Cathode: $4H_2O + 4e^- => 2H_2 + 4OH^-$

- Low TRL Technology
- Research Stage

3

Overview - LTE Technology Relevance / Impact

PEM

- Gas Crossover
- Membranes
- Catalyst Materials
- Catalyst Loading
- PTL Materials

AEM

- Membranes
- Catalyst
- Ionomer
- Electrolyte feed required?
- BOP Materials

Common Barriers

- Material Integration
- Material Cost
- Understanding Interfaces and Interactions

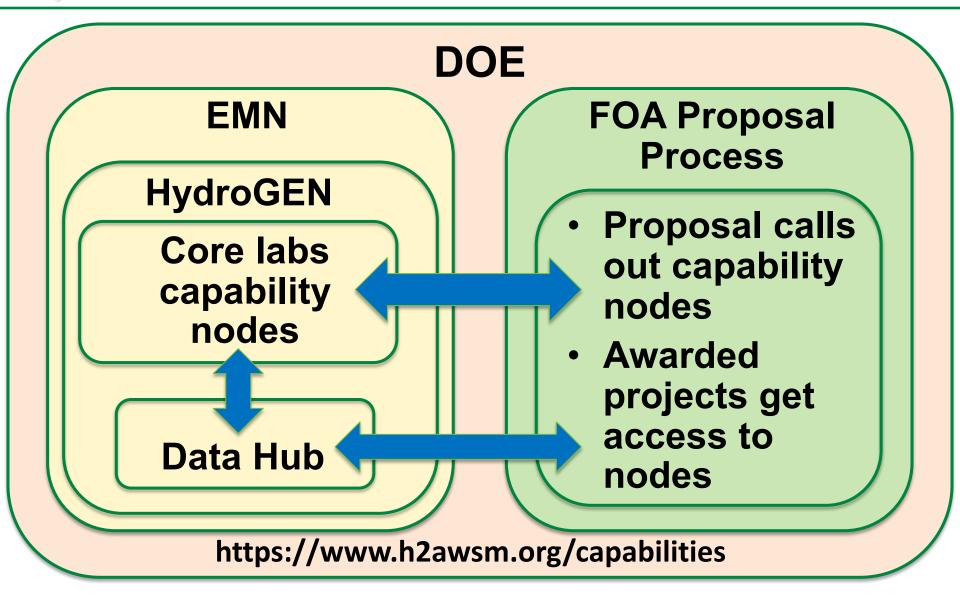
4

Overview - LTE Technology Relevance / Impact

State-of-Art PEM

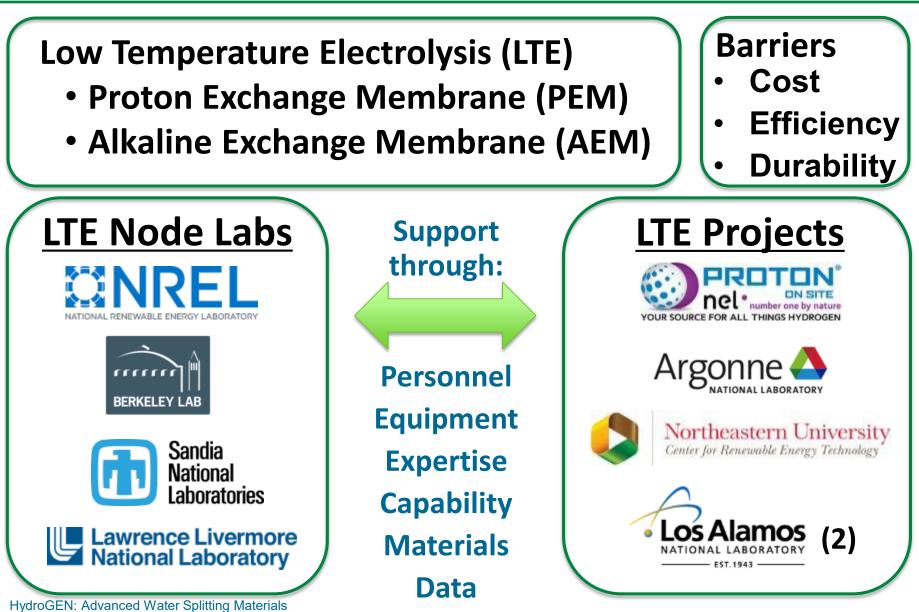
- 2V @ 2A/cm²
- 2-3 mg/cm² PGM catalyst loading on anode & cathode
- 60k 80k hours in commercial units
- Niche applications
 - Life support
 - Industrial H₂
 - Power plants for cooling
- \$3.7/kg H₂ production*

State-of-Art AEM


- 2V @ 0.2A/cm² in H₂O
- Improved performance in basic solution
- 2-3 mg/cm² PGM-free catalyst loading on anode & cathode
- ~2k hour at 27°C demonstrated **
- No commercial units
- \$/kg production not available

*High volume projection of hydrogen production for electrolysis:

https://www.energy.gov/sites/prod/files/2017/10/f37/fcto-progress-fact-sheet-august-2017.pdf


** K.Ayers, AMR Presentation PD094, 06/2014

Approach – HydroGEN EMN

7

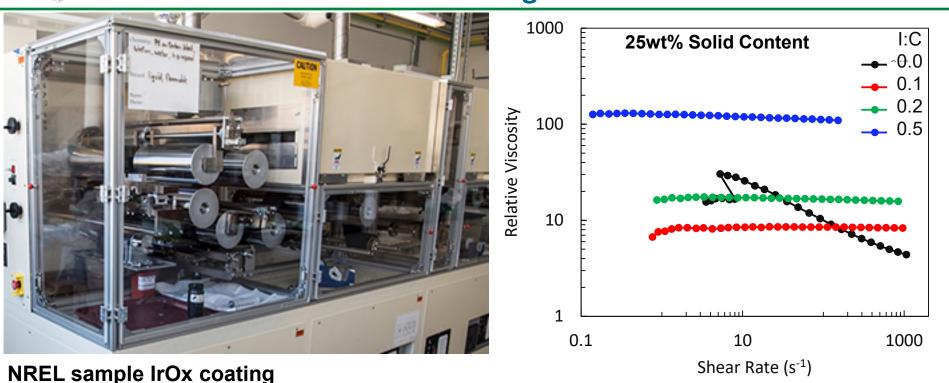
Accomplishments and Progress: Established Nodes for Project Support

<u>47 nodes for LTE</u>

- 20x readiness level 1
- 23x readiness level 2
- 4x readiness level 3

13 nodes used by current LTE projects

Node Classification 6x Analysis 14x Benchmarking 24x Characterization 13x Computation 10x Material Synthesis 10x Process and Manufacturing Scale-Up


2x System Integration

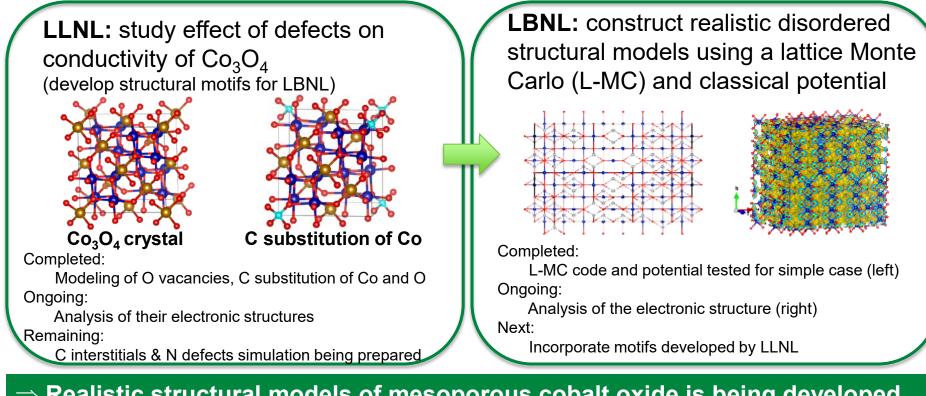
Accomplishments and Progress:

Rheology and zeta potential measurements by NREL node show Nafion ionomer stabilizes IrO_x ink against agglomeration

- Node personnel interacts frequently with Proton OnSite to ensure relevance
- Future studies to include new materials: Pt black, high surface area IrO_x

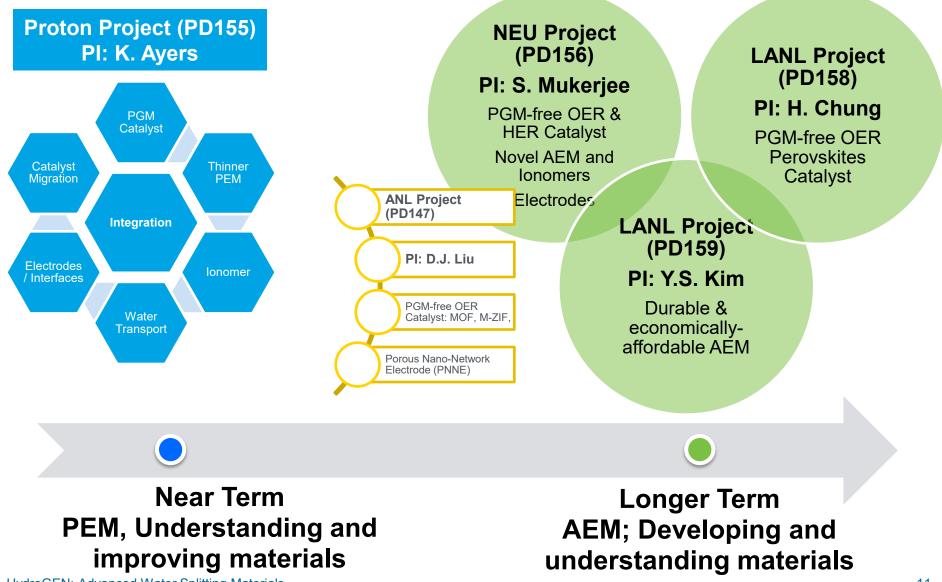
HvdroGEN: Advanced Water Splitting Materials

M. Ulsh: MN019, 6/13/18 Wed.



Accomplishments and Progress: Computation Nodes

- Understand factors that improve electronic conductivity of cobalt oxide
- Develop structural models of (meso-porous) cobalt oxide using a combination of DFT simulations and lattice Monte Carlo simulations.
- The developed models will be validated by characterization in future.

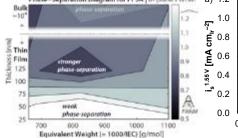


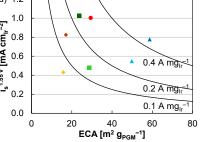
⇒ Realistic structural models of mesoporous cobalt oxide is being developed by fully leveraging expertise at LBNL and of LLNL nodes

D.J. Liu, PD157, 6/13/18 Wed.

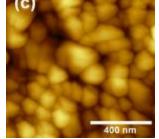
Accomplishments and Progress: 5 HydroGEN LTE Seedling Projects

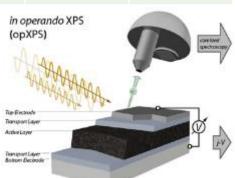
HydroGEN: Advanced Water Splitting Materials


Collaboration and Coordination - Node Utilization


Core Lab	Node	Proton	ANL	NEU	LANL1	LANL2
LLNL	Computational Materials Diagnostics and Optimization of Photoelectrochemical Devices		1			
LBNL	DFT and Ab Initio Calculations for Water Splitting Including Real-Time Time-Dependent Density Functional Theory		1		1	
LBNL	Multiscale Modeling of Water- Splitting Devices	1		1		1
SNL	LAMMPS			1		
SNL	Separators for Hydrogen Production				1	
NREL	Novel Membrane Fabrication and Development for Low Temperature Electrolysis and PEC	1		1		
NREL	Multi-Component Ink Development, High-Throughput Fabrication, and Scaling Studies	1	1	1		
Processin				ing & Sc	ale Up	
HydroGEN: Advanced Water Splitting Materials			Material Synthesis			

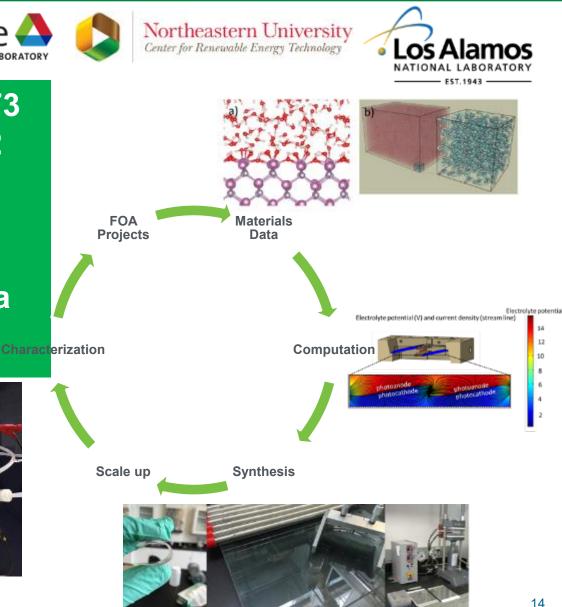
Collaboration and Coordination - Node Utilization


Core Lab	Node	Proton	ANL	NEU	LANL1	LANL2
SNL	Advanced Electron Microscopy		 Image: A second s			
NREL	Electrolysis Catalyst Synthesis, Ex situ Characterization and Standardization	√	1			
LBNL	Ionomer Characterization and Understanding	1		1		1
LBNL	In-Situ and Operando Nanoscale Characterization Capabilities for Photoelectrochemical Materials and Integrated Assemblies	1				
NREL	In Situ Testing Capabilities for Hydrogen Generation (1kW–250 kW)	1		1	1	
NREL	Surface Analysis Cluster Tool		1		1	
Phase-Separation Diagram for PFSA [In-plane PWHM a) 1.2 Bulk -10 ⁴			4.70		operando XPS oXPS)	



Characterization

HydroGEN: Advanced Water Splitting Materials


Collaboration and Coordination - Statistics

- Exchanged Samples: 73
- Personnel involved: 62
- Data shared through data hub:
 - 21 files
 - >20GB imaging data
 - structural model

Accomplishments and Progress – Case Study

School of

Engineering

ProtonOnsite: High Efficiency PEM Water Electrolysis

CAK RIDGE

 Integration of advanced cell designs and materials

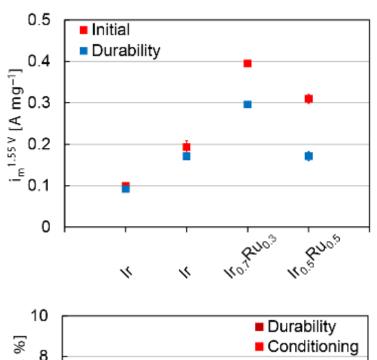
nel "number one by natu

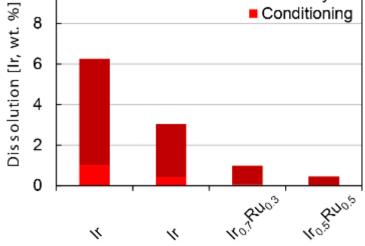
- Catalyst composition
- Stable 3-D structures
- Thinner membranes
- Robust manufacturing
- Optimized interfacial layers
- Fundamental characterization and modeling of performance
 - Water transport
 - Catalyst migration
- Phase I: Define reliable MEA configuration with high efficiency through new catalyst materials and optimized membrane processing

Statistics

- Samples
 Exchanged: 30
- Personnel Involved: 22
- Files shared through data hub: 6

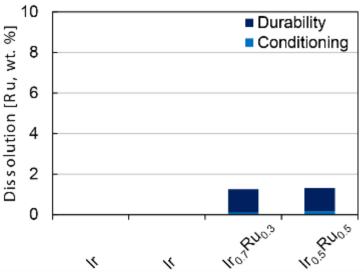
K. Ayers, PD155, 6/13/18 Wed.


Hydreeen. 7

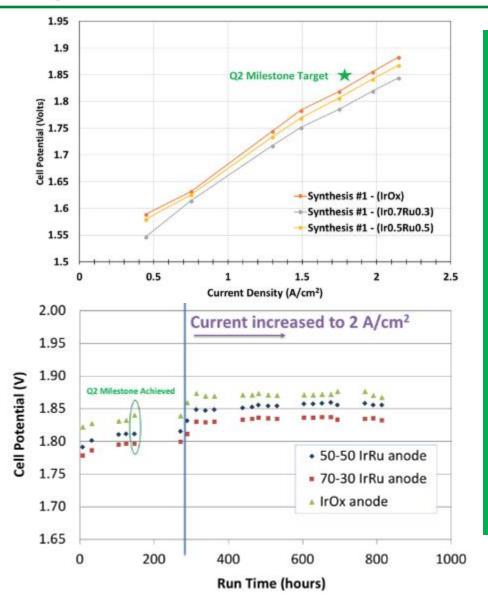

Advanced Water opiltung Materials

National Lab	Capability	Node Role/Task		
LBNL	Multiscale Modeling of Water-Splitting Devices	Water transport modelling in cell operating with differential pressure and liquid water on the anode		
NREL	Novel Membrane Fabrication and Development for Low Temperature Electrolysis and PEC	Membrane characterization, including Fenton's test for membrane durability, IEC, and Fluoride emission measurement of effluent.		
NREL	Multi-Component Ink Development, High-Throughput Fabrication, and Scaling Studies	Study electrode ink formulation and mixing; ink characterization. Show pathway to scaled fabrication of advanced electrolysis electrodes.		
NREL	Electrolysis Catalyst Synthesis, Ex situ Characterization and Standardization	Feasibility assessment/benchmark measurements for improved predictability of OER device performance		
LBNL	Ionomer Characterization and Understanding	Development of EC-AFM to characterize catalyst dissolution and morphology degradation in-situ		
LBNL	In-Situ and Operando Nanoscale Characterization Capabilities for Photoelectrochemical Materials and Integrated Assemblies	Convert water, void, and solid volumes into modeling domains. Multiphysics transport and reaction kinetics model, along with resistances and domains provided by Tufts, to assess the overall device overpotentials		
NREL	In Situ Testing Capabilities for Hydrogen Generation (1kW–250 kW)	External validation and characterization of advanced MEAs and baseline MEAs		
Computation Material Synthesis Processing & Scale Up Characterization				

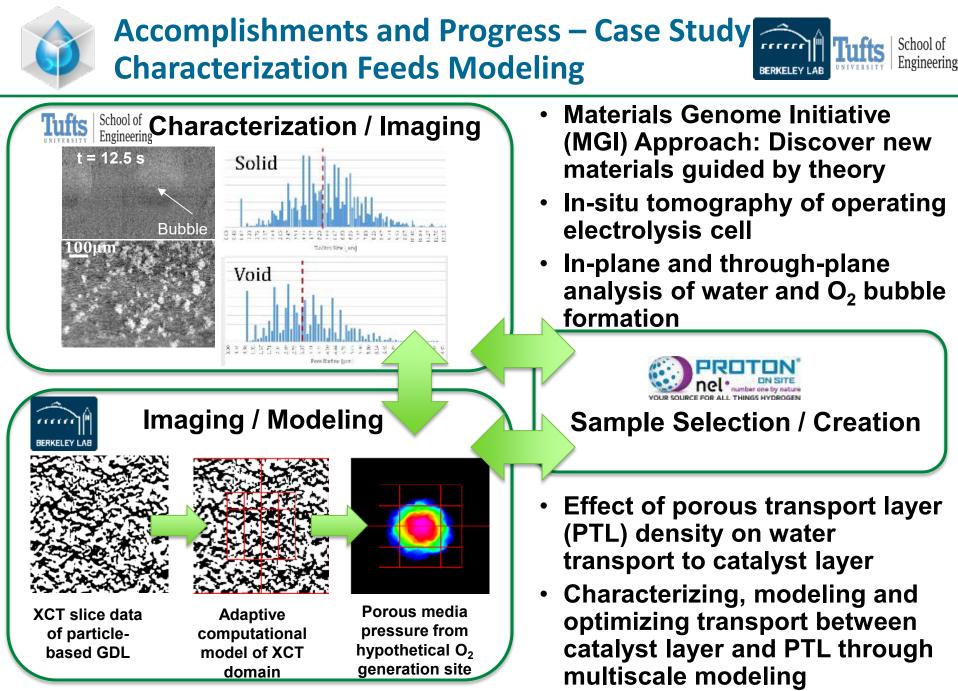
Accomplishments and Progress – Case Study Advanced Catalysts: Ex-Situ Testing Node



HydroGEN: Advanced Water Splitting Materials


*Activities at 1.55V;

- Ir_{0.7}Ru_{0.3} showed higher initial activity and durability than Ir_{0.5}Ru_{0.5}
- Conditioning & durability protocols impact metal dissolution
 - Weaker on IrRu alloys
 - Stronger on pure Ir
- Low metal dissolution suggests:
 - Presence of metal oxides
 - Catalysts are sufficiently stable for MEA testing



Accomplishments and Progress – Case Study Advanced Catalysts: In-Situ Cell Testing

- Example Accomplishments by Project Lead
- Various synthesized catalysts met the Q2 milestone performance target (*, 1.8A/cm², 1.85V)
- Achieved 800 h durability at target current density (1.8 A/cm²), and beyond
- Ex-situ (node) dissolution results correlate with the in-situ MEA performance results (project lead)

HydroGEN: Advanced Water Splitting Materials

GDL –Gas Diffusion Layer; XCT – X-ray Computed Tomography

19

Accomplishments and Progress – Project Summary

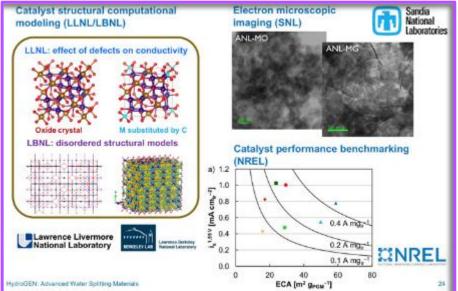
Sandia

National

Developing Novel PGM-Free Catalysts for Alkaline Hydrogen and Oxygen Evolution Reactions

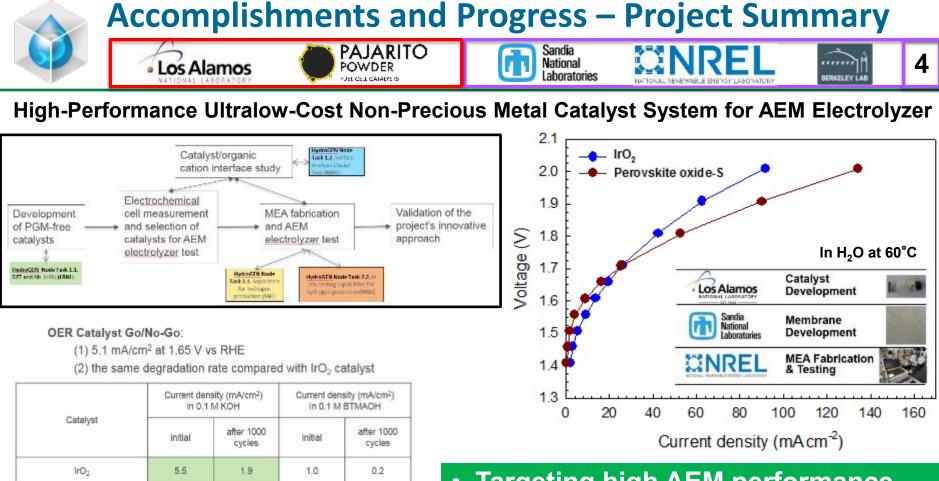
Argonne 📤

University at Buffalo


The State University of New Yor

D.J. Liu, PD157, 6/13/18 Wed. HydroGEN: Advanced Water Splitting Materials

- Targeting 20x reduction of anode catalyst • cost by using PGM-free materials
- Approach based on metal-organic framework (MOF) OER catalysts


Laboratories HATONAL RENEWABLE ENERGY LABORAL

- Initial Co-MOF-G-O catalyst comparison with 0.2 mg/cm² loaded Ir black electrodes:
 - Approaching same activities (ex-situ)
 - Exceeds durability

20

Lawrence Livermore National Laboratory

- Targeting high AEM performance without feeding alkaline solution
- Ex-situ characterization of 6 LANL PGM- and carbon-free OER catalysts
- Promising first results with baseline perovskite oxide-S (ex-situ & in-situ)

H. Chung, PD158, 6/13/18 Wed.

2.0

0.9

2.5

27

2.7

3.4

3.1

2.5

4.4

3.8

3.9

4.1

1.8

3.9

53

4.8

2.7

4.1

-

5.5

6.8

6.2

5.2

Perovskite oxide-S

Perovskite oxide-A

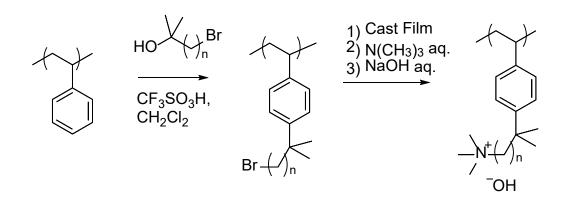
Perovskite oxide-B

Perovskite oxide-C

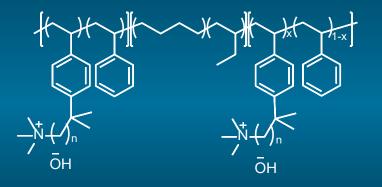
Perovskite oxide-D

Perovskite oxide-E

Accomplishments and Progress – Project Summary


Scalable Elastomeric Membranes for Alkaline Water Electrolysis

Rensselaer


Styrene-Ethylene-Butylene-Styrene Block Copolymer

- Robust polymer backbone
- \rightarrow No aryl-ether polymer backbone provides chemical stability.
- Block copolymer architecture
- \rightarrow Soft block provides toughness under dry & wet conditions.
- Cheap base polymer
- \rightarrow Various SEBS are commercially available on the market.

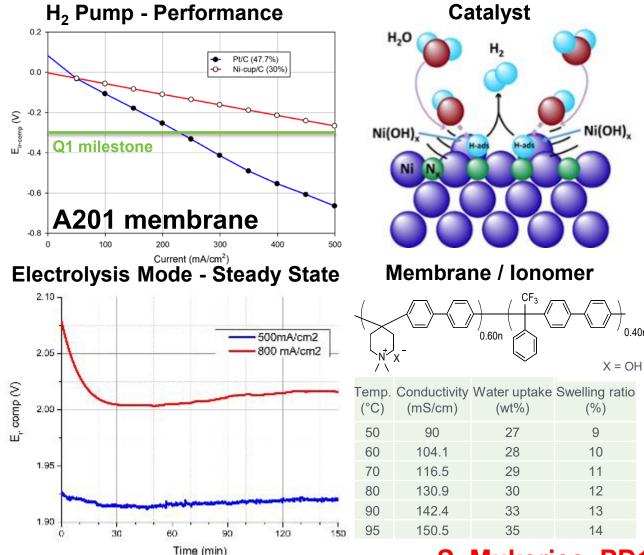
Friedel-Crafts Alkylation

Y.S. Kim, PD159, 6/13/18 Wed.

CREEK FY I AL

OH⁻ conductivity 40 mS/cm at 30 °C

Alkaline stability < 5% degradation after 500 h in 1 M NaOH at 80 °C **Accomplishments and Progress – Project Summary**


NIVERSITY OF ELAWARE Sandia

National

Laboratories

Developing Novel PGM-Free Catalysts for Alkaline HER and OER Evolution

Advent

Northeastern University (ease in Remarky Englishing)

HvdroGEN: Advanced Water Splitting Materials

Develop AEM electrolysis

- PGM-free HER and OER catalysts
- AEM
 membranes
 and ionomers
- Electrodes
- Targeting

 \$2/kg_{H2} with
 efficiency of
 43 kWh/kg H₂

S. Mukerjee, PD156, 6/13/18 Wed.

6

- Collaboration with Proton 2B Benchmarking Project
- Node feedback on questionnaire & draft test framework on material, component, and device level properties:
 - Ex-situ material testing
 - >In-Situ testing at simulated conditions
 - >In-Situ testing at operating conditions
- All HydroGEN LTE node capabilities were assessed for AWS technology relevance and readiness level

- HydroGEN structure promoting research and development of advanced materials for water splitting devices
- EMN structure supports interaction and collaboration between core capabilities of national labs and funded project partners
- 5 LTE projects funded across PEM and AEM technologies
- Ongoing data, information, and personnel exchange for improved collaboration

- Leverage HydroGEN Nodes at the labs to enable successful achievement of Phase 1 project Go/No-Go's
 - Increased durability and lifetime
 - Rational design of catalysts, electrode structures and cells
 - Understanding the role of ionomers and electrified interfaces
- Enable research in Phase 2 work for some projects and enable new seedling projects
- Work with the 2B team and LTE working group to establish testing protocols and benchmarks
- Utilize data hub for increased communication, collaboration, generalized learnings, and making digital data public

Any proposed future work is subject to change based on funding levels

Acknowledgements

Energy Materials Network

Lawrence Livermore National Laboratory

Technical Backup Slides

- Case study highlights HydroGEN consortia approach
 - FOA projects bring technical challenges and advanced materials
 - Nodes collaborate to help resolve challenges, enhance scientific effort
- Proton project statistics: 3 partners, 7 nodes
 ⇒ 22 personnel + 30 samples
- Q2 milestone achieved: 3 OER catalysts meet performance target <1.85V @ 1.8 A/cm² over 800 hrs
 - OER catalyst prescreened at NREL node for activity and stability
 - EMN approach allows for longer path length deep dives into understanding fundamental properties of AWS materials
 - Multiscale modeling integrated with in situ tomography (MGI approach) to understand water consumption at interfaces
 - Membrane and MEA fabrication after understanding ionomer, ink and dispersion fundamentals translate to in-situ cell testing of advanced materials

LTE Presentations & Papers

Presentations

- "Low Temperature Electrolysis for Hydrogen and Oxygen Generation a Tutorial on Catalyst and Electrode Development for Proton and Anion Exchange Membrane-Based Systems", K.E. Ayers, (Invited), 233rd Electrochemical Society Meeting, Seattle, WA, May 2018.
- "Carbon-Free Perovskite Oxide Oxygen Evolution Reaction Catalysts for AEM Electrolyze", H. T. Chung, A. S. Lee, Y. S. Kim, C. Fujimoto, L. W. Wang, G. Teeter, G. Bender, and P. Zelenay, 233rd Electrochemical Society Meeting, Seattle, WA, May 2018.
- 3. "HydroGEN LTE/HTE Benchmarking Discussion", organized by K. E. Ayers, H. Dinh, and N. Danilovic, 233rd ECS, Seattle, WA, May 2018.
- 4. "Current understanding of the slow kinetics of the hydrogen evolution reaction in alkaline media", S. Mukerjee,
 J. Li and Q. Jia, (Invited), 233rd Electrochemical Society meeting, Seattle, WA, May 2018
- "Understanding the improved kinetics of the hydrigen evolution/oxidation reactions of the Pt-oxophilic metal systems in alkaline medium", Q. Jia, J. Li and S.Mukerjee, 233rd Electrochemical Society Meeting, Seattle, WA, May, 2018

Papers

- "Hydrogen oxidartion reaction in alkaline media: Relationship between electrocatalysis and electrochemical double layer", N. Ramaswamy, S. Ghoshal, M. K. Bates, Q. Jia, J. Li and S. Mukerjee*, Nano Energy, 41 (2017) 765-771
- "Experimental Proof of the Bifunctional Mechanism for Hydrogen Oxidation", J. Li, S. Ghoshal, M. K. Bates, T. E. Miller, V. Davies, E. Stavitski, K. Attenkofer, S. Mukerjee, Zi-Feng Ma and Q. Jia*, Angewandte Chemie Comm., 56 (2017) 15594